(本小题满分14分)
已知数列{xn}的各项为不等于1的正数,其前n项和为Sn,点Pn的坐标为(xn,Sn),若所有这样的点Pn (n=1,2,…)都在斜率为k的同一直线(常数k≠0,1)上.
(Ⅰ)求证:数列{xn}是等比数列;
(Ⅱ)设
满足
ys=
,yt=
(s,t∈N,且s≠t)共中a为常数,且1<a<
,试判断,是否存在自然数M,使当n>M时,xn>1恒成立?若存在,求出相应的M;若不存在,请说明理由.
证明(1)∵点
,
都在斜率为k的直线上
∴
=k,即
=k,………………………………………(1分)
故 (k-1)xn+1=kxn
∵k≠0,xn+1≠1,xn≠1,………………………………………(3分)
∴
=
=常数,∴{xn}是公比为
的等比数列。……………………………(4分)
(2)答案是肯定的,即存在自然数M,使当n>M时,xn>1恒成立。………………(5分)
事实上,由1<a<
,得0<2a2-3a+1<1 …………………………………(6分)
∵yn=log
(2a2-3a+1),
∴
= log
xn ………………………………………(8分)
由(1)得{xn}是等比数列,设公比为q>0首项为x1,则xn=x1·qn-1(n∈N)
∴
=(n-1) log
q+log
x1
令d=log
q,故得{
}是以d为公差的等差数列。
又∵
=2t+1,
=2s+1,
∴
-
=2(t-s)
即(s-1)d-(t-1)d=2(t-s),
∴d=-2………………………………………(10分)
故
=
+(n-s)(-2)=2(t+s)-2n+1(n∈N)
又∵xn=(2a2-3a+1)
(n∈N)
∴要使xn>1恒成立,即须
<0………………………………………(12分)
∴2(t+s)-2n+1<0,∴n>(t+s)+
,当M=t+s,n>M时,我们有
<0恒成立,
∴当n>M=(t+s)时,
>1恒成立。(∵0<2a2-3a+1<1)…………………(14分)
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com