精英家教网 > 高中数学 > 题目详情
命题“任意x∈R,x2+3x+2<0”的否定是
?x∈R,x2+3x+2≥0
?x∈R,x2+3x+2≥0
分析:特称命题的否定,既否定量词,也否定结论,故否定后的量词为?,结论为x2+3x+2≥0
解答:解:根据特称命题的否定,既否定量词,也否定结论的原则可得
命题“?x∈R,x2+3x+2<0”的否定是命题是“?x∈R,x2+3x+2≥0”
故答案为:?x∈R,x2+3x+2≥0
点评:本题考查的知识点是特称命题,命题的否定,熟练掌握特称命题的否定方法是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若对任意x∈R,y∈R有唯一确定的f (x,y)与之对应,则称f (x,y)为关于x,y的二元函数.
定义:同时满足下列性质的二元函数f (x,y)为关于实数x,y的广义“距离”:
(Ⅰ)非负性:f (x,y)≥0;
(Ⅱ)对称性:f (x,y)=f (y,x);
(Ⅲ)三角形不等式:f (x,y)≤f (x,z)+f (z,y)对任意的实数z均成立.
给出下列二元函数:
①f (x,y)=(x-y)2
②f (x,y)=|x-y|;
③f (x,y)=
x-y

④f (x,y)=|sin(x-y)|.
则其中能够成为关于x,y的广义“距离”的函数编号是
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)命题“任意x∈R使得|x|+
4
|x|
≤4
”的否定是
存在x∈R,|x|+
4
|x|
>4
存在x∈R,|x|+
4
|x|
>4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义域为R的函数,有下列命题:
①对任意x∈R,f(x+1)=f(1-x)成立,那么函数f(x)的图象关于直线x=1对称;
②对任意x∈R,f(x)+f(1-x)=2成立,那么函数f(x)的图象关于点(1,1)对称;
③对任意x∈R,f(x)+f(x+1)=0成立,那么函数f(x)是周期为2的周期函数;
④对任意x∈R,f(1-x)+f(x-1)=0成立,那么函数f(x)是奇函数.
其中正确的命题的序号是
 
.(把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省许昌市禹州一高高二(上)期中数学试卷(文科)(解析版) 题型:选择题

已知命题p:任意x∈R,x>sinx,则p的否定形式为( )
A.非p:存在x∈R,x<sin
B.非p:任意x∈R,x≤sin
C.非p:存在x∈R,x≤sin
D.非p:任意x∈R,x<sin

查看答案和解析>>

科目:高中数学 来源:2011年黑龙江省双鸭山一中高考数学四模试卷(理科)(解析版) 题型:填空题

若对任意x∈R,y∈R有唯一确定的f (x,y)与之对应,则称f (x,y)为关于x,y的二元函数.
定义:同时满足下列性质的二元函数f (x,y)为关于实数x,y的广义“距离”:
(Ⅰ)非负性:f (x,y)≥0;
(Ⅱ)对称性:f (x,y)=f (y,x);
(Ⅲ)三角形不等式:f (x,y)≤f (x,z)+f (z,y)对任意的实数z均成立.
给出下列二元函数:
①f (x,y)=(x-y)2
②f (x,y)=|x-y|;
③f (x,y)=
④f (x,y)=|sin(x-y)|.
则其中能够成为关于x,y的广义“距离”的函数编号是    .(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案