精英家教网 > 高中数学 > 题目详情
2.函数f(x)=xlnx的单调递减区间为(  )
A.$(0,\frac{1}{e})$B.$(-∞,\frac{1}{e})$C.(-∞,-e)D.$(\frac{1}{e},+∞)$

分析 求出函数的定义域,求出函数的导函数,令导函数小于等于0求出x的范围,写出区间形式即得到函数y=xlnx的单调递减区间.

解答 解:函数的定义域为x>0
∵f′(x)=lnx+1
令lnx+1<0得0<x<$\frac{1}{e}$,
∴函数f(x)=xlnx的单调递减区间是( 0,$\frac{1}{e}$),
故选:A.

点评 本题考查函数的单调区间的问题,一般求出导函数,令导函数大于0求出x的范围为单调递增区间;令导函数小于0求出x的范围为单调递减区间;注意单调区间是函数定义域的子集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.双曲线2x2-y2=8的实半轴长与虚轴长之比为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax3+bx2+x(a,b∈R),且f(1)=0,f'(1)=0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.曲线y=1+$\sqrt{4-{x^2}}$与直线kx-y-2k+5=0有两个交点时,实数k的取值范围是$(\frac{3}{4},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x0∈R,x02+x0-1<0”的否定是(  )
A.?x∈R,x2+x-1≥0B.?x∈R,x2+x-1<0
C.?x0∈R,x02+x0-1≥0D.?x0∈R,x02+x0-1>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:(x-3)(x+2)<0,命题q:$\sqrt{x-5}$>0,若命题p∨q为真命题,命题p∧q为假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sinα=$\frac{4}{5}$,且tanα<0,则cos(π+α)=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列否定不正确的是(  )
A.“?x∈R,x2>0”的否定是“?x0∈R,x02≤0”
B.“?x0∈R,x02<0”的否定是“?x∈R,x2<0”
C.“?θ0∈R,sinθ0+cosθ0<1”的否定是“?θ∈R,sinθ+cosθ≥1”
D.“?θ∈R,sinθ≤1”的否定是?θ0∈R,sinθ0>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设{an}是公比为q的等比数列,则“q>1”是“{an}为单调递增数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案