精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=|x|•(a-x),a∈R.
(Ⅰ)当a=4时,画出函数f(x)的图象,并写出其单调递增区间;
(Ⅱ)若a>0,当实数c分别取何值时集合{x|f(x)=c}内的元素个数恰有一个、恰有两个、恰有三个?

分析 (Ⅰ)化简f(x)=|x|•(4-x)=$\left\{\begin{array}{l}{{x}^{2}-4x,x<0}\\{-{x}^{2}+4x,x≥0}\end{array}\right.$,从而结合二次函数的图象作图,从而写出单调区间;
(Ⅱ)化简f(x)=$\left\{\begin{array}{l}{-x(a-x),x<0}\\{x(a-x),x≥0}\end{array}\right.$,从而确定函数的单调性及极值,从而讨论元素的个数即可.

解答 解:(Ⅰ)当a=4时,f(x)=|x|•(4-x)=$\left\{\begin{array}{l}{{x}^{2}-4x,x<0}\\{-{x}^{2}+4x,x≥0}\end{array}\right.$,
作f(x)的图象如图,
其单调递增区间为[0,2];
(Ⅱ)f(x)=$\left\{\begin{array}{l}{-x(a-x),x<0}\\{x(a-x),x≥0}\end{array}\right.$,
结合二次函数可知,
f(x)在(-∞,0]上是减函数,在(0,$\frac{a}{2}$)上是增函数,
在[$\frac{a}{2}$,+∞)上是减函数;
而f(0)=0,f($\frac{a}{2}$)=$\frac{{a}^{2}}{4}$,
故当c∈(-∞,0)∪($\frac{{a}^{2}}{4}$,+∞)时,集合{x|f(x)=c}内的元素个数恰有一个,
当c=0或$\frac{{a}^{2}}{4}$时,集合{x|f(x)=c}内的元素个数恰有二个,
当c∈(0,$\frac{{a}^{2}}{4}$)时,集合{x|f(x)=c}内的元素个数恰有三个.

点评 本题考查了学生的作图能力及数形结合的思想应用,同时考查了方程的根与图象的交点的关系应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.给出下列命题:
①若{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}可以作为空间的一个基底,$\overrightarrow{d}$与$\overrightarrow{c}$共线,$\overrightarrow{d}$≠0,则{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{d}$}也可作为空间的一个基底;
②已知向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$,$\overrightarrow{b}$与任何向量都不能构成空间的一个基底;
③A,B,M,N是空间四点,若$\overrightarrow{BA}$,$\overrightarrow{BM}$,$\overrightarrow{BN}$不能构成空间的一个基底,那么A,B,M,N共面;
④已知向量组{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}是空间的一个基底,若$\overrightarrow{m}$=$\overrightarrow{a}$+$\overrightarrow{c}$,则{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{m}$}也是空间的一个基底.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}sinπx(0≤x≤1)\\{log_{2018}}x(x>1)\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是(  )
A.(2,2018)B.(2,2019)C.(3,2018)D.(3,2019)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\left\{\begin{array}{l}1-|{x-1}|({x≤2})\\-\frac{1}{4}{x^2}+2x-3(x>2)\end{array}\right.$,如在区间(1,+∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得比值$\frac{{f({x_1})}}{x_1}$=$\frac{{f({x_2})}}{x_2}$=…=$\frac{{f({x_n})}}{x_n}$成立,则n的取值集合是(  )
A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列幂函数在定义域内单调递增且为奇函数的是(  )
A.$y={x^{\frac{1}{2}}}$B.y=x2C.y=x3D.y=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列各函数的导数
(1)y=xsinx+cosx;
(2)y=3x2-x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在焦点在x轴椭圆中截得的最大矩形的面积范围是[3b2,4b2],则椭圆离心率的范围是(  )
A.$[{\frac{{\sqrt{5}}}{3},\frac{{\sqrt{3}}}{2}}]$B.$[{\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}}]$C.$[{\frac{1}{2},\frac{{\sqrt{3}}}{2}}]$D.$[{\frac{{\sqrt{2}}}{4},\frac{{\sqrt{3}}}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.a=30.8,b=30.7,c=log30.7,则a,b,c大小顺序为(  )
A.a>b>cB.a<b<cC.b<a<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:
常喝不常喝合计
肥胖2
不肥胖18
合计30
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为$\frac{4}{15}$.
(1)请将上面的列联表补充完整
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由
(3)4名调查人员随机分成两组,每组2人,一组负责问卷调查,另一组负责数据处理.求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

同步练习册答案