精英家教网 > 高中数学 > 题目详情
方程lgx=lg12-lg(x+4)的解集为
{2}
{2}
分析:先根据对数的运算性质化简可得lg(x2+4x)=lg12,然后解一元二次方程,注意定义域,从而求出所求.
解答:解:∵lgx=lg12-lg(x+4)
∴lgx+lg(x+4)=lg12即lg[x(x+4)]=lg(x2+4x)=lg12
∴x2+4x=12∴x=2或-6
∵x>0∴x=2
故答案为:{2}.
点评:本题主要考查解对数方程的问题,以及对数的运算性质,这里注意对数的真数一定要大于0,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列四个命题:
(1)一定存在直线l,使函数f(x)=lgx+lg
12
的图象与函数g(x)=lg(-x)+2的图象关于直线l对称;
(2)在复数范围内,a+bi=0?a=0,b=0
(3)已知数列an的前n项和为Sn=1-(-1)n,n∈N*,则数列an一定是等比数列;
(4)过抛物线y2=2px(p>0)上的任意一点M(x°,y°)的切线方程一定可以表示为y0y=p(x+x0).
则正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四个命题:
(1)一定存在直线l使函数f(x)=lgx+lg
1
2
的图象与函数g(x)=lg(-x)+2的图象关于直线l对称
(2)不等式:arcsinx≤arccosx的解集为[
2
2
,1]

(3)已知数列{an}的前n项和为Sn=1-(-1)n,n∈N*,则数列{an}一定是等比数列;
(4)过抛物线y2=2px(p>0)上的任意一点M(x°,y°)的切线方程一定可以表示为y0y=p(x+x0).
则正确命题的序号为
(3)(4)
(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

方程lgx=lg12-lg(x+4)的解集为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程lgx=lg12-lg(x+4)的解集为______.

查看答案和解析>>

同步练习册答案