精英家教网 > 高中数学 > 题目详情
如图2-6-15,两圆内切于点A,P是两圆公切线上的点,过P点作小圆的割线PBC,连结AB、AC,并延长分别交大圆于D、E,求证:.

2-6-15

证明:连结DE,∵∠PAB=∠ACB,∠P=∠P,

∴△PAB∽△PCA.∴=.

∵∠PAD=∠E,∠PAB=∠ACB,

∴∠ACB=∠E.同理,∠ABC=∠D.

∴BC∥DE.∴=.

=.∴=.

又由切割线定理,得PA2=PB·PC,

.∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•西山区模拟)为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
性别
是否
达标
合计
达标 a=24  b=
6
6
30
30
不达标  c=
8
8
d=12
20
20
合计
32
32
18
18
n=50
(Ⅰ) 设m,n表示样本中两个学生的百米测试成绩,已知mn∈[13,14)∪[17,18]求事件“|m-n|>2”的概率;
(Ⅱ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如附表:
根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥K) 0.050 0.010 0.001
K 3.841 6.625 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网对某班学生是爱好体育还是爱好文娱进行调查,根据调查得到的数据,所绘制的二维条形图如图.
(1)根据图中的数据,制作2×2列表;
(2)若要从更爱好文娱和从更爱好体育的学生中各选一人分别作文体活动的协调人,求选出的两人恰好是一男一女的概率;
(3)在多大的程度上可以认为性别与是否爱好体育有关系?
参考数据:
P(K2≥k) 0.5 0.4 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
   k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

某市在“节约用水、保护水资源”的宣传教育活动中发布两则公益广告,活动组织者为了了解宣传效果,对10~60岁人群随机抽样调查了n人,要求被调查人回答两则广告的内容,调查结果如下表所示:
广告一 广告二
年龄组 回答正确人数 在本组的频率 回答正确人数 在本组的频率
[10,20﹚ 90 a 45 b
[20,30﹚ 225 0.75 240 0.8
[30,40﹚ 378 0.9 252 0.6
[40,50﹚ 180 c 120 d
[50,60﹚ 15 0.25 30 0.5
被抽样调查的n人在各年龄段人数的分布情况如频率分布直方图所示(如图)
(1)分布求出n和数表中a,b,c,d的值;
(2)如果表中的频率近似看作各年龄组中每人正确回答广告的概率,从被调查的n人中任选一人,求此人能正确回答广告一的概率;
(3)如果[10,20)年龄组中每人对两则广告都回答错误的概率为
3
8
,组织者随机请一名16岁的学生回答两则广告内容,求该学生至少能正确回答一个广告的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某大学高等数学老师上学期分别采用了A,B两种不同的教学方式对甲、乙两个大一新生班进行教改试验(两个班人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名同学的上学期数学期末考试成绩,得到茎叶图如图:
(Ⅰ)从乙班这20名同学中随机抽取两名高等数学成绩不得低于85分的同学,求成绩为90分的同学被抽中的概率;
(Ⅱ)学校规定:成绩不低于85分的为优秀,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
甲班 乙班 合计
优秀
不优秀
合计
下面临界值表仅供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
(Ⅲ)从乙班高等数学成绩不低于85分的同学中抽取2人,成绩不低于90分的同学得奖金100元,否则得奖金50元,记ξ为这2人所得的总奖金,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案