精英家教网 > 高中数学 > 题目详情
(2011•西山区模拟)为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
性别
是否
达标
合计
达标 a=24  b=
6
6
30
30
不达标  c=
8
8
d=12
20
20
合计
32
32
18
18
n=50
(Ⅰ) 设m,n表示样本中两个学生的百米测试成绩,已知mn∈[13,14)∪[17,18]求事件“|m-n|>2”的概率;
(Ⅱ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如附表:
根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥K) 0.050 0.010 0.001
K 3.841 6.625 10.828
分析:(I)成绩在[13,14)的人数有2人,设为a,b.成绩在[17,18]的人数有3人,设为A,B,C;基本事件总数为10,事件“|m-n|>2”由6个基本事件组成.根据古典概型公式可求出所求.
(Ⅱ)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,即可求得.
解答:解:(Ⅰ)成绩在[13,14)的人数有:50×0.04=2人,设为a,b.
成绩在[17,18]的人数有:50×0.06=3人,
设为A,B,C.m,n∈[13,14)时有ab一种情况.
m,n∈[17,18]时有AB,AC,BC三种情况.
m,n分别在[13,14)和[17,18]时有aA,aB,aC,bA,bB,bC六种情况.
基本事件总数为10,事件“|m-n|>2”由6个基本事件组成.
所以P(|m-n|>2)=
6
10
=
3
5
(13分)…(6分)
(Ⅱ)依据题意得相关的2×2列列联表联表如下:
性别
是否达标
合计
达标 a=24 b=6 30
不达标 c=8 d=12 20
合计 32 18 n=50
…(9分)
K2=
50×(24×12-6×8)2
32×18×30×20
≈8.333>6.625

故有99%的把握认为“体育达标与性别有关”
故可以根据男女生性别划分达标的标准…(12分)
点评:本题主要考查了独立性检验的应用、频率分布直方图,以及古典概型的概率问题、用样本的数字特征估计总体的数字特征等有关知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•西山区模拟)已知向量
a
=(1,3),
b
=(-2,m)
,若
a
a
+2
b
垂直,则m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西山区模拟)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于D,DE⊥AC交AC延长线于点E,OE交AD于点F.
(Ⅰ)求证:DE是⊙O的切线;
(Ⅱ)若
AC
AB
=
3
5
,求
AF
DF
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西山区模拟)下列四个函数中,在区间(0,1)上为增函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西山区模拟)
3-sin170°1+sin240°
的值等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西山区模拟)已知函数f(x)=(x3-6x2+3x+t)ex,t∈R.依次在x=a,x=b,x=c(a<b<c)处取得极值.
(Ⅰ)求t的取值范围;
(Ⅱ)若a,b,c成等差数列,求t的值.

查看答案和解析>>

同步练习册答案