(本小题满分15分)
已知函数![]()
(Ⅰ)求函数
的极值;
(Ⅱ)对于曲线上的不同两点
,如果存在曲线上的点
,且
,使得曲线在点
处的切线
∥
,则称
为弦
的伴随切线。特别地,当
,
时,又称
为
的λ——伴随切线。
(ⅰ)求证:曲线
的任意一条弦均有伴随切线,并且伴随切线是唯一的;
(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有
伴随切线?若存在,给出一条这样的曲线
,并证明你的结论; 若不存在 ,说明理由。
(Ⅰ)当
时,
没有极值;
当
时,
的极大值为
,没有极小值。(Ⅱ)见解析
【解析】(Ⅰ)
当
,
,函数
在
内是增函数,
∴函数
没有极值。 当
时,令
,得
。
当
变化时,
与
变化情况如下表:
|
|
|
|
|
|
|
+ |
0 |
- |
|
|
单调递增 |
极大值 |
单调递减 |
∴当
时,
取得极大值
。
综上,当
时,
没有极值;
当
时,
的极大值为
,没有极小值。
(Ⅱ)(ⅰ)设
是曲线
上的任意两点,要证明
有伴随切线,只需证明存在点
,使得
,且点
不在
上。
∵
,即证存在
,使得
,即
成立,且点
不在
上。 …………………8分
以下证明方程
在
内有解。…
记
,则
。
令
,
∴
,
∴
在
内是减函数,∴
。
取
,则
,即
。……9分
同理可证
。∴
。
∴函数
在
内有零点。
即方程
在
内有解
。又对于函数
取
,则![]()
可知
,即点Q不在
上。
是增函数,∴
的零点是唯一的,
即方程
在
内有唯一解。
综上,曲线
上任意一条弦均有伴随切线,并且伴随切线是唯一的。
(ⅱ)取曲线C:
,则曲线
的任意一条弦均有
伴随切线。
证明如下:
设
是曲线C上任意两点
,
则
,
又
,
即曲线C:
的任意一条弦均有
伴随切线。
注:只要考生给出一条满足条件的曲线,并给出正确证明,均给满分。若只给曲
线,没有给出正确的证明,请酌情给分。
解法二:
(Ⅰ)同解法一。
(Ⅱ)(ⅰ)设
是曲线
上的任意两点,要证明
有伴随切线,只需证明存在点
,使得
,且点
不在
上。 ∵
,即证存在
,使得
,
即
成立,且点
不在
上。 …………… 8分
以下证明方程
在
内有解。
设
。…
则
。
记
,
∴
,
∴
在
内是增函数,
∴
。 同理
。
。
∴方程
在
内有解
。 又对于函数
,
∵
,
,
可知
,即点Q不在
上。
又
在
内是增函数,
∴方程
在
内有唯一解。
综上,曲线
上任意一条弦均有伴随切线,并且伴随切线是唯一的。
(ⅱ)同解法一。
科目:高中数学 来源:2012-2013学年福建省高三上学期期中理科数学试卷(解析版) 题型:解答题
(本小题满分15分)
已知函数![]()
(Ⅰ)求函数
的单调区间;
(Ⅱ)若
,试分别解答以下两小题.
(ⅰ)若不等式
对任意的
恒成立,求实数
的取值范围;
(ⅱ)若
是两个不相等的正数,且
,求证:
.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三下学期3月联考理科数学 题型:解答题
(本小题满分15分).
已知
、
分别为椭圆
:
的
上、下焦点,其中
也是抛物线
:
的焦点,
点
是
与
在第二象限的交点,且
。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点P(1,3)和圆
:
,过点P的动直线
与圆
相交于不同的两点A,B,在线段AB取一点Q,满足:
,
(
且
)。求证:点Q总在某定直线上。
![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题
(本小题满分15分)
如图已知,椭圆
的左、右焦点分别为
、
,过
的直线
与椭圆相交于A、B两点。
(Ⅰ)若
,且
,求椭圆的离心率;
(Ⅱ)若
求
的最大值和最小值。
![]()
查看答案和解析>>
科目:高中数学 来源:2014届浙江省宁波市高一上学期期末考试数学 题型:解答题
(本小题满分15分)若函数
在定义域内存在区间
,满足
在
上的值域为
,则称这样的函数
为“优美函数”.
(Ⅰ)判断函数
是否为“优美函数”?若是,求出
;若不是,说明理由;
(Ⅱ)若函数
为“优美函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011年江苏省高二下学期期中考试理数 题型:解答题
(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com