精英家教网 > 高中数学 > 题目详情
某商品每件成本9元,售价为30元,每星期卖出144件. 如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比.
已知商品单价降低2元时,一星期多卖出8件.
(1)将一个星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
(1)(2)见解析

试题分析:(1)先设商品降价x元,写出多卖的商品数,则可计算出商品在一个星期的获利数,再依题意:“商品单价降低2元时,一星期多卖出24件”求出比例系数即可得一个星期的商品销售利润表示成x的函数;
(2)根据(1)中得到的函数,利用导数研究其极值,从而救是f(x)达到极大值.从而得出所以定价为多少元时,能使一个星期的商品销售利润最大.
试题解析:解:(1)设商品降价元,则每个星期多卖的商品数为,若记商品在一个星期的获利为,则依题意有,   3分
又由已知条件,,于是有,                      5分
所以             6分
(2)由(1)得          7分
变化时,的变化如下表:


2

12



 

 



极小

极大

   10分
时,达到极大值.因为
所以定价为元能使一个星期的商品销售利润最大.      13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定义在[﹣1,1]上的奇函数f(x)满足f(1)=2,且当a,b∈[﹣1,1],a+b≠0时,有
(1)试问函数f(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直,若存在,求出A,B两点的坐标;若不存在,请说明理由并加以证明.
(2)若对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直角坐标平面内的两个不同的点满足条件:①都在函数的图象上;②关于原点对称.则称点对为函数的一对“友好点对”.(注:点对为同一“友好点对”).已知函数,此函数的友好点对有(  )
A.0对 B.1对C.2对D.3对

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于两个图形,我们将图形上的任意一点与图形上的任意一点间的距离中的最小值,叫做图形与图形的距离.若两个函数图像的距离小于1,陈这两个函数互为“可及函数”.给出下列几对函数,其中互为“可及函数”的是_________.(写出所有正确命题的编号).




.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”.给出下列4个函数:
;②; ③; ④
其中存在唯一“可等域区间”的“可等域函数”为(     )
A.①②③B.②③C.①③D.②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的零点所在区间为(     )
A.(0,1) B.(-1,0) C.(1,2) D.(-2,-l)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设[x]表示不超过x的最大整数(如[2]=2,[]=1),对于给定的nN*,定义x,则当x时,函数的值域是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在R上的函数f(x),满足f(m+n2)=f(m)+2[f(n)]2,m,nR,且f(1):≠0,则f(2014)的值为____

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

我国辽东半岛普兰附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可用放射性碳法.在动植物的体内都含有微量的放射性14C,动植物死亡后,停止了新陈代谢,14C不再产生,且原有的14C会自动衰变,经过5570年(叫做14C的半衰期),它的残余量只有原始量的一半,经过科学家测定知道,若14C的原始含量为a,则经过t年后的残余量a′(与a之间满足a′=a·e-kt).现测得出土的古莲子中14C残余量占原量的87.9%,试推算古莲子的生活年代.

查看答案和解析>>

同步练习册答案