精英家教网 > 高中数学 > 题目详情
曲线f(x)=x+
1
x
x=
1
2
处的切线方程是______,在x=x0处的切线与直线y=x和y轴围成三角形的面积为______.
由题意可得f′(x)=1-
1
x2
,f(
1
2
)=
5
2

故曲线在x=
1
2
处的切线的斜率k=f′(
1
2
)
=-3,
故切线方程为y-
5
2
=-3(x-
1
2
),即3x+y-4=0;
可得在x=x0处的切线斜率为f′(x0)=1-
1
x02

故方程为:y-(x0+
1
x0
)=(1-
1
x02
)(x-x0),
令y=x可得x=y=2x0,令x=0可得y=
2
x0

故三角形的面积为S=
1
2
×|
2
x0
||2x0|
=2,
故答案为:3x+y-4=0;2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(
x
+
2
)2(x>0)
,设正项数列an的首项a1=2,前n 项和Sn满足Sn=f(Sn-1)(n>1,且n∈N*).
(1)求an的表达式;
(2)在平面直角坐标系内,直线ln的斜率为an,且ln与曲线y=x2相切,ln又与y轴交于点Dn(0,bn),当n∈N*时,记dn=
1
4
|
Dn+1Dn
|-1
,若Cn=
d
2
n+1
+
d
2
n
2dn+1dn
,求数列cn的前n 项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线f(x)=
ex
x-1
在x=0处的切线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线线f(x,y)=0(或y=f(x))的自公切线,下列方程的曲线:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=
4-y2
,存在自公切线的是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)对于定义域分别为M,N的函数y=f(x),y=g(x),规定:
函数h(x)=
f(x)•g(x),当x∈M且x∈N
f(x),当x∈M且x∉N
g(x),当x∉M且x∈N

(1)若函数f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函数h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,设bn为曲线y=h(x)在点(an,h(an))处切线的斜率;而{an}是等差数列,公差为1(n∈N*),点P1为直线l:2x-y+2=0与x轴的交点,点Pn的坐标为(an,bn).求证:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常数,且α∈[0,2π],请问,是否存在一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cosx,若存在请写出一个f(x)的解析式及一个α的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
x
+
2
)2(x>0)
,设正项数列an的首项a1=2,前n 项和Sn满足Sn=f(Sn-1)(n>1,且n∈N*).
(1)求an的表达式;
(2)在平面直角坐标系内,直线ln的斜率为an,且ln与曲线y=x2相切,ln又与y轴交于点Dn(0,bn),当n∈N*时,记dn=
1
4
|
Dn+1Dn
|-1
,若Cn=
d
2
n+1
+
d
2
n
2dn+1dn
,设Tn=C1+C2+C3+…+Cn,求
lim
n→∞
n
Tn

查看答案和解析>>

同步练习册答案