设的导数为,若函数的图象关于直线对称,且.
(Ⅰ)求实数,的值;
(Ⅱ)求函数的单调区间.
【解析】第一问中,由于函数的图象关于直线对称,所以.
又 ∴
第二问中由(Ⅰ),,
令,或;
∴函数在及上递增,在上递减.
科目:高中数学 来源:2014届黑龙江省海林市高二下学期期中考试理科数学试卷(解析版) 题型:解答题
设的导数为,若函数的图像关于直对称,且. (1)求实数的值 ;(2)求函数的极值.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年甘肃省高三上学期第一次检测文科数学试卷(解析版) 题型:解答题
(本小题满分12分,(Ⅰ)小题5分,(Ⅱ)小题7分)
设的导数为,若函数的图像关于直线对称,且.
(Ⅰ)求实数的值(Ⅱ)求函数的极值
查看答案和解析>>
科目:高中数学 来源:2013届浙江省高二下学期期末考试理科数学试卷(解析版) 题型:解答题
设的导数为,若的图象关于直线对称,且在处取得极小值
(Ⅰ)求实数的值;
(Ⅱ)求函数在的最值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com