精英家教网 > 高中数学 > 题目详情
(2013•海口二模)选修4-1:几何证明选讲
切线AB与圆切于点B,圆内有一点C满足AB=AC,∠CAB的平分线AE交圆于D,E,延长EC交圆于F,延长DC交圆于G,连接FG.
(Ⅰ)证明:AC∥FG;
(Ⅱ)求证:EC=EG.
分析:(Ⅰ)通过证明△ACD∽△AEC,推出∠ACD=∠AEC,然后证明AC∥FG                  
(Ⅱ)证明:连接BD,BE,EG,证明△ABD≌△ACD,△ABE≌△△ACE,然后证明BE=EG,
解答:证明:(Ⅰ)证明:∵AB切圆于B,
∴AB2=AD•AE,
又∵AB=AC,
∴AC2=AD•AE,
∴△ACD∽△AEC,
∴∠ACD=∠AEC,
又∵∠AEC=∠DGF,
∴∠ACD=∠DGF,∴AC∥FG                                 (5分)
(Ⅱ)证明:连接BD,BE,EG
由AB=AC,∠BAD=∠DAC及AD=AD,知△ABD≌△ACD,同理有△ABE≌△ACE,
∴∠BDE=∠CDE,BE=CE
∴BE=EG,
∴EC=EG                               (10分)
点评:本题考查直线与圆的位置关系,三角形的全等与三角形相似定理的应用,考查逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•海口二模)复数z=
1+2i
1-i
的共轭复数在复平面上对应的点在(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海口二模)已知集合M={-1,0,1},N={0,1,2},则如图所示韦恩图中的阴影部分所表示的集合为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海口二模)设偶函数f(x)=Asin(ωx+?)(A>0,ω>0,0<?<π)的部分图象如图所示,△KLM为等腰直角三角形,∠KML=90°,KL=1,则f(
1
6
)
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海口二模)设O,A,B,M为平面上四点,
OM
=
λOA
+(1-λ)
OB
,λ∈(0,1),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海口二模)若a>0,b>0,a+b=2,则下列不等式:①a2+b2≥2;②
1
a
+
1
b
≥2
;③ab≤1;④
a
+
b
2
恒成立的是(  )

查看答案和解析>>

同步练习册答案