精英家教网 > 高中数学 > 题目详情
已知两个等差数列{an}和{bn}的前n和分别为An和Bn,且
An
Bn
=
2n+1
n+3
,则
a9
b9
=
7
4
7
4
分析:
a9
b9
=
2a9
2b9
=
a1+a17
b1+b17
=
A17
B17
,由此利用
An
Bn
=
2n+1
n+3
,能求出结果.
解答:解:∵两个等差数列{an}和{bn}的前n和分别为An和Bn
An
Bn
=
2n+1
n+3

a9
b9
=
2a9
2b9
=
a1+a17
b1+b17

=
17
2
(a1+a17)
17
2
(b1+b17)
=
A17
B17

=
2×17+1
17+3
=
7
4

故答案为:
7
4
点评:本题考查等差数列的通项公式和前n项和公式的合理运用,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个等差数列{an}和{bn}的前n项和分别是An和Bn,且
An
Bn
=
2n+1
n+3
,则
a9
b9
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个等差数列{an}和{bn}的前n项和分别An和Bn,且
An
Bn
=
7n+45
n+3
,则使得
an
bn
为整数的正整数n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个等差数列{an},{bn}的前n项和分别是An,Bn,且
An
Bn
=
7n+45
n+3
,则
a4
b4
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个等差数列{ a n }和{ b n }的前n项和S n,T n的比=。则=       。(用n表示)

查看答案和解析>>

同步练习册答案