精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆C1的中心在原点O,长轴左、右端点M、N在x轴上,椭圆C2的短轴为MN,且C1、C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点纵坐标从大到小依次为A、B、C、D.

(1)设 ,求|BC|与|AD|的比值;
(2)若存在直线l,使得BO∥AN,求椭圆离心率e的取值范围.

【答案】
(1)

解:因为C1、C2的离心率相同,

故依题意可设

设直线l:x=t(|t|<a)分别和C1、C2的方程联立,

求得

时, ,分别用yA、yB表示A、B的纵坐标,

|BC|与|AD|的比值


(2)

解:t=0时的l不符合题意,t≠0时,BO∥AN,当且仅当BO的斜率kBO与AN的斜率kAN相等,

即: ,解得

因为|t|<a,又0<e<1,

所以 ,解得

∴当 时,存在直线l,使得BO∥AN,即离心率e的取值范围是

∴椭圆离心率e的取值范围


【解析】(1)由题意设椭圆方程,联立即可求得A和B坐标,当 时, ,分别用yA、yB表示A、B的纵坐标, ;(2)分类,当t=0时的l不符合题意,当t≠0时,当且仅当BO的斜率kBO与AN的斜率kAN相等,根据斜率公式求得t,由 ,即可椭圆离心率e的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣lnx,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若a=e2 , 当x∈(0,e]时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 为奇函数.
(1)则a=
(2)函数g(x)=f(x)﹣ 的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,∠ACB=90°,AC=BC=1,AA1=2,D是棱AA1的中点.
(Ⅰ)求证:B1C1∥平面BCD;
(Ⅱ)求三棱锥B﹣C1CD的体积;
(Ⅲ)在线段BD上是否存在点Q,使得CQ⊥BC1?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有两个命题,p:关于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校有2500名学生,其中高一1000人,高二900人,高三600人,为了了解学生的身体健康状况,采用分层抽样的方法,若从本校学生中抽取100人,从高一和高三抽取样本数分别为a,b,且直线ax+by+8=0与以A(1,﹣1)为圆心的圆交于B,C两点,且∠BAC=120°,则圆C的方程为(
A.(x﹣1)2+(y+1)2=1
B.(x﹣1)2+(y+1)2=2
C.(x﹣1)2+(y+1)2=
D.(x﹣1)2+(y+1)2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线E:x2=2py(p>0)焦点F且倾斜角的60°直线l与抛物线E交于点M,N,△OMN的面积为4. (Ⅰ)求抛物线E的方程;
(Ⅱ)设P是直线y=﹣2上的一个动点,过P作抛物线E的切线,切点分别为A、B,直线AB与直线OP、y轴的交点分别为Q、R,点C、D是以R为圆心、RQ为半径的圆上任意两点,求∠CPD最大时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,点A在l上的射影为A1 . 若|AB|=|A1B|,则直线AB的斜率为(
A.±3
B.±2
C.±2
D.±

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的圆柱O1O2中,等腰梯形ABCD内接于下底面圆O1 , AB∥CD,且AB为圆O1的直径,EA和FC都是圆柱O1O2的母线,M为线段EF的中点.
(1)求证:MO1∥平面BCF;
(2)已知BC=1,∠ABC=60°,且直线AF与平面ABC所成的角为30°,求平面MAB与平面EAD所成的角(锐角)的余弦值.

查看答案和解析>>

同步练习册答案