| A. | $\frac{\sqrt{6}}{3π}$ | B. | $\frac{\sqrt{6}}{6π}$ | C. | $\frac{3\sqrt{2}}{8π}$ | D. | $\frac{3\sqrt{2}}{4π}$ |
分析 设球半径为R,正方体边长为a,由题意得当正方体体积最大时:${a}^{2}+(\frac{\sqrt{2}}{2}a)^{2}$=R2,由此能求出所得工件体积与原料体积之比的最大值.
解答 解:设球半径为R,正方体边长为a,
由题意得当正方体体积最大时:${a}^{2}+(\frac{\sqrt{2}}{2}a)^{2}$=R2,
∴R=$\frac{\sqrt{6}}{2}a$,
∴所得工件体积与原料体积之比的最大值为:
$\frac{{a}^{3}}{\frac{1}{2}×\frac{4}{3}π{R}^{3}}$=$\frac{{a}^{3}}{\frac{1}{2}×\frac{4}{3}×(\frac{\sqrt{6}}{2})^{3}}$=$\frac{\sqrt{6}}{3π}$.
故选:A.
点评 本题考查两个几何体的体积之比的最大值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{13}{15}$ | B. | $\frac{2}{81}$ | C. | $\frac{13}{243}$ | D. | $\frac{80}{243}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {2} | C. | {2,3,4} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (4,4) | B. | (2,4) | C. | (-2,4) | D. | (-4,4) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com