(2012年高考(湖南理))已知数列{an}的各项均为正数,记A(n)=a1+a2++an,B(n)=a2+a3++an+1,C(n)=a3+a4++an+2,n=1,2。
(1) 若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{ an }的通项公式.
(2) 证明:数列{ an }是公比为q的等比数列的充分必要条件是:对任意,三个数A(n),B(n),C(n)组成公比为q的等比数列.
【解析】
解(1)对任意,三个数是等差数列,所以
即亦即
故数列是首项为1,公差为4的等差数列.于是
(Ⅱ)(1)必要性:若数列是公比为q的等比数列,则对任意,有
由知,均大于0,于是
即==,所以三个数组成公比为的等比数列.
(2)充分性:若对于任意,三个数组成公比为的等比数列,
则
,
于是得即
由有即,从而.
因为,所以,故数列是首项为,公比为的等比数列,
综上所述,数列是公比为的等比数列的充分必要条件是:对任意n∈N﹡,三个数组成公比为的等比数列.
【点评】本题考查等差数列、等比数列的定义、性质及充要条件的证明.第一问由等差数列定义可得;第二问要从充分性、必要性两方面来证明,利用等比数列的定义及性质易得证.
科目:高中数学 来源: 题型:
(2012年高考(湖南理))已知数列{an}的各项均为正数,记A(n)=a1+a2++an,B(n)=a2+a3++an+1,C(n)=a3+a4++an+2,n=1,2。
(1) 若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{ an }的通项公式.
(2) 证明:数列{ an }是公比为q的等比数列的充分必要条件是:对任意,三个数A(n),B(n),C(n)组成公比为q的等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
(2012年高考(湖南理))函数f(x)=sinx-cos(x+)的值域为 ( )
A.[ -2 ,2] B.[-,] C.[-1,1 ] D.[- , ]
查看答案和解析>>
科目:高中数学 来源: 题型:
(2012年高考(湖南理))已知两条直线 :y=m 和: y=(m>0),与函数的图像从左至右相交于点A,B ,与函数的图像从左至右相交于C,D .记线段AC和BD在X轴上的投影长度分别为a ,b ,当m 变化时,的最小值为 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
(2012年高考(湖南理))设集合M={-1,0,1},N={x|x2≤x},则M∩N= ( )
A.{0} B.{0,1} C.{-1,1} D.{-1,0,0}
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com