精英家教网 > 高中数学 > 题目详情
已知集合A={3,a2},集合B={0,b,1-a},且A∩B={1},则A∪B=(  )
A.{0,1,3}B.{1,2,4}C.{0,1,2,3}D.{0,1,2,3,4}
∵A={3,a2},集合B={0,b,1-a},且A∩B={1},
∴a2=1,解得:a=1或a=-1,
当a=1时,1-a=1-1=0,不合题意,舍去;
当a=-1时,1-a=1-(-1)=2,此时b=1,
∴A={3,1},集合B={0,1,2},
则A∪B={0,1,2,3}.
故选C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有-a∉A,则称集合A具有性质P.
(Ⅰ)检验集合{0,1,2,3}与{-1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;
(Ⅱ)对任何具有性质P的集合A,证明:n≤
k(k-1)2

(Ⅲ)判断m和n的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于下列命题:
①已知集合A={正四棱柱},B={长方体},则A∩B=B;
②函数y=
1
lgx
在(0,+∞)为单调函数;
③在平面直角坐标系内,点M(|a|,|a-3|)与N(cosα,sinα)在直线x+y-2=0的异侧;
④若
1
a
<1
,则a<0或a>1;
⑤互为反函数的两个不同函数的图象若有交点,则交点一定在直线y=x上.其中正确命题的序号为
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x≤a+3},B={x|x<-1或x>5}.
(1)若a=-2,求A∩?RB;
(2)若A⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:北京高考真题 题型:解答题

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A},其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n,若对于任意的a∈A,总有-aA,则称集合A具有性质P。
(1)检验集合{0,1,2,3}与{-1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;
(2)对任何具有性质P的集合A,证明: n≤
(3)判断m和n的大小关系,并证明你的结论。

查看答案和解析>>

科目:高中数学 来源:月考题 题型:解答题

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a﹣b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有﹣aA,则称集合A具有性质P.
(I)检验集合{0,1,2,3}与{﹣1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;
(II)对任何具有性质P的集合A,证明: ;
(III)判断m和n的大小关系,并证明你的结论.

查看答案和解析>>

同步练习册答案