精英家教网 > 高中数学 > 题目详情

已知函数f(x)=sin2ωx+sinωxsin(ω>0)的最小正周期为.
(1)写出函数f(x)的单调递增区间;
(2)求函数f(x)在区间上的取值范围.

(1)(k∈Z)(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的定义域和最小正周期;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数
(1)求函数的最小正周期;
(2)求函数在区间上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了得到函数y=2sin(x∈R)的图象,只需把函数y=2sinx(x∈R)的图象上所有的点经过怎样的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ab=(4sinx,cosx-sinx),f(x)=a·b.
(1)求函数f(x)的解析式;
(2)已知常数ω>0,若y=f(ωx)在区间上是增函数,求ω的取值范围;
(3)设集合A=,B={x||f(x)-m|<2},若AB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,函数f(x)=-2asin(2x+)+2a+b,当x∈[0,]时,-5≤f(x)≤1.
(1)求常数a,b的值.
(2)设g(x)=f(x+)且lg g(x)>0,求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知sin,A∈.
(1)求cosA的值;
(2)求函数f(x)=cos2x+sinAsinx的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知cos α=,cos(α+β)=-,且α、β∈,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知2rad的圆心角所对的弦长为2,求这个圆心角所对的弧长.

查看答案和解析>>

同步练习册答案