精英家教网 > 高中数学 > 题目详情

已知函数,其中a>0.

(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;

(Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.

答案:
解析:

  解:(Ⅰ)当时,

  所以曲线在点处的切线方程为,即

  (Ⅱ)

  令,解得.针对区间,需分两种情况讨论:

  (1)若,则

  当变化时,的变化情况如下表:

  所以在区间上的最小值在区间的端点得到.因此在区间上,恒成立,等价于

  

  即解得,又因为,所以

  (2)若,则

  当变化时,的变化情况如下表:

  所以在区间上的最小值在区间的端点或处得到.

  因此在区间上,恒成立,等价于

  即

  解得,又因为,所以

  综合(1),(2),a的取值范围为


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数(其中A>0,)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.

(Ⅰ)求的解析式;

(Ⅱ)当,求的值域;

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)已知函数(其中A>0,)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求的解析式;(Ⅱ)当,求的值域;

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省济宁市汶上一中高二(下)期末数学试卷(文科)(解析版) 题型:解答题

已知函数,其中a>0.
(Ⅰ)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[2,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆七中高三(下)3月月考数学试卷(文科)(解析版) 题型:解答题

已知函数,其中a>0.
(1)、若x=1是y=f(x)的一个极值点,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)、若曲线y=f(x)与x轴有3个不同交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省武汉市武昌区高一(下)期末数学试卷(解析版) 题型:解答题

已知函数,其中a>0且a≠1.
(1)求f(x)的解析式;
(2)判断并证明f(x)的单调性;
(3)当x∈(-∞,2)时,f(x)-4的值恒为负数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案