精英家教网 > 高中数学 > 题目详情

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.

(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?

(2)为保证小艇在30分钟内(30分钟)能与轮船相遇,试确定小艇航行速度的最小值;

(3)是否存在v,使得小艇以v海里/时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.

 

【答案】

(1) 小艇以30海里/时的速度航行,相遇时小艇的航行距离最小

(2) 10海里/(3)存在,v的取值范围是(15,30)

【解析】

:(1)法一 设相遇时小艇的航行距离为s海里,

s=

=

=.

故当t=,smin=10,v==30.

即小艇以30海里/时的速度航行,相遇时小艇的航行距离最小.

法二 若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.

如图所示,设小艇与轮船在C处相遇.

RtOAC,OC=20cos 30°=10,

AC=20sin 30°=10.

AC=30t,OC=vt,

此时,轮船航行时间t==,v==30.

即小艇以30海里/时的速度航行,相遇时小艇的航行距离最小.

(2)如图所示,设小艇与轮船在B处相遇.

由题意可得

(vt)2=202+(30t)2-2×20×30t×cos(90°-30°),

化简得v2=-+900

=400(-)2+675.

由于0<t,2,

所以当=2,v取得最小值10,

即小艇航行速度的最小值为10海里/.

(3)(2)v2=-+900,

=u(u>0),于是400u2-600u+900-v2=0.(*)

小艇总能有两种不同的航行方向与轮船相遇,等价于方程(*)应有两个不等正根,

解得15<v<30.

所以v的取值范围是(15,30).

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶.假设该小船沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
(Ⅲ)是否存在v,使得小艇以v海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届福建省高二上学期期中考试文科数学试卷(解析版) 题型:解答题

(本小题满分12分)

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶. 假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.

(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行时间应为多少小时?

(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省福州市高三第五次质量检查数学文卷 题型:解答题

(本小题满分12分)

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的处,并正以30海里/小时的航行速度沿正东方向匀速行驶。假设该小艇沿直线方向以海里/小时的航行速度匀速行驶,经过小时与轮船相遇。

(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?

(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;

 

 

查看答案和解析>>

同步练习册答案