精英家教网 > 高中数学 > 题目详情
7.已知数列{an}的通项an=$\frac{1}{(3n-2)(3n+1)}$,求前n项和.

分析 由于an=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,利用“裂项求和”即可得出.

解答 解:∵an=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,
∴前n项和=$\frac{1}{3}[(1-\frac{1}{4})+(\frac{1}{4}-\frac{1}{7})$+…+$(\frac{1}{3n-2}-\frac{1}{3n+1})]$
=$\frac{1}{3}(1-\frac{1}{3n+1})$
=$\frac{n}{3n+1}$.

点评 本题考查了“裂项求和”,考查了变形能力、计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.解不等式:
(1)(m-2)x2>1-m;
(2)56x2+ax<a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的定义域.
(1)y=$\sqrt{x+8}+\sqrt{3-x}$;
(2)$y=\frac{1}{{1-\frac{1}{{1-\frac{1}{|x|-x}}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:设a、b、c是非零实数,求$\frac{ab}{|ab|}$+$\frac{bc}{|bc|}$+$\frac{ac}{|ac|}$+$\frac{abc}{|abc|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足方程x2+y2-4x+3=0,则x2+y2的最大值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在数列{an}中,a1=2,a2=2,an+2-an=1+(-1)n,n∈N*,则S60的值为(  )
A.990B.1000C.1100D.99

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.根据下列条件,求数列的通项公式an,n∈N*
(1)数列{an}中,a2=6,an+1-2an=0;
(2)数列{an}中,a1=1,an+1=an+$\frac{{a}_{n}}{n+1}$;
(3)数列{an}中,a1=2,an+1=2an+3,n∈N* 则an=3•2n-1-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设公差为-2的等差数列{an},若a1+a4+a7+…+a91+a94=150,那么a3+a6+a9+…+a93+a96等于(  )
A.18B.22C.26D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.化简:
(1)$\sqrt{5-2\sqrt{6}}$
(2)$\sqrt{7+\sqrt{40}}+\sqrt{7-\sqrt{40}}$
(3)$\sqrt{3-2\sqrt{2}}$
(4)$\sqrt{a-2\sqrt{a-1}}$(1<a<2)

查看答案和解析>>

同步练习册答案