精英家教网 > 高中数学 > 题目详情
已知定义域为(-1,1)的奇函数y=f(x)又是减函数,且f(a-3)+f(9-a2)<0,则a的取值范围是(  )
A、(2
2
,3)
B、(3,
10
)
C、(2
2
,4)
D、(-2,3)
分析:根据函数是奇函数,我们可以根据奇函数的性质可将,不等式f(a-3)+f(9-a2)<0化为f(a-3)<f(a2-9),再根据函数y=f(x)又是减函数,及其定义域为(-1,1),我们易将原不等式转化为一个不等式组,解不等式组即可得到a的取值范围.
解答:解:∵函数是定义域为(-1,1)的奇函数
∴-f(x)=f(-x)
又∵y=f(x)是减函数,
∴不等式f(a-3)+f(9-a2)<0可化为:
f(a-3)<-f(9-a2
即f(a-3)<f(a2-9)
-1<a-3<1
-1<a2-9<1
a-3>a2-9

解得a∈(2
2
,3)

故选:A
点评:本题考查的知识点是函数奇偶性的应用、函数单调性的应用,利用函数的奇偶性和单调性,结合函数的定义域,我们将原不等式转化为不等式组是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为(-1,1)的奇函数y=f(x)又是增函数,且f(a-2)+f(4-a2)>0,则a的取值范围是(  )
A、(
2
,3)
B、(
3
,2)
C、(
3
5
)
D、(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为(-1,1)函数f(x)=-x3-x,且f(a-3)+f(9-a2)<0,则a的取值范围是
(2
2
,3)
(2
2
,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为(-1,1),函数f(x)=-x3-x,且f(a-3)+f(9-a2)<0.则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为(-1,1)的函数f(x)=
xx2+1

(Ⅰ)判断函数f(x)奇偶性并加以证明;
(Ⅱ)判断函数f(x)的单调性并用定义加以证明;
(Ⅲ)解关于x的不等式f(x-1)+f(x)<0.

查看答案和解析>>

同步练习册答案