精英家教网 > 高中数学 > 题目详情
已知曲线C的参数方程为
x=2+cosθ
y=1+sinθ
(θ∈[0,π]),且点P(x,y)在曲线C上,则
y+x-1
x
的取值范围是(  )
分析:由题意得曲线C是半圆,借助已知动点在单位圆上任意动,而所求式子
y+x-1
x
=1+
y-1
x
y-1
x
的形式可以联想成在单位圆上动点P与点C(0,1)构成的直线的斜率,进而求解.
解答:解:∵
x=2+cosθ
y=1+sinθ
x-2=cosθ
y-1=sinθ

∴(x-2)2+(y-1)2=1,其中y∈[1,2]
由题意作出如下图形,
y+x-1
x
=1+
y-1
x

令k=
y-1
x
,则k可看作圆(x-2)2+y2=1上的动点P到点C(0,1)的连线的斜率而相切时的斜率,
由于此时直线与圆相切,
在直角三角形ACB中,∠ACB=30°,⇒k=
3
3

由图形知,k的取值范围是[0,
3
3
].
y+x-1
x
的取值范围是[1,1+
3
3
].
故选B.
点评:此题重点考查了已知两点坐标写斜率,及直线与圆的相切与相交的关系,还考查了利用几何思想解决代数式子的等价转化的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C的参数方程为
x=1+cosθ
y=sinθ.
(θ为参数),则曲线C上的点到直线2x-y+2=0的距离的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)选做题(请考生在第16题的三个小题中任选两题作答,如果全做,则按前两题记分,要写出必要的推理与演算过程)
(1)如图,已知Rt△ABC的两条直角边BC,AC的长分别为3cm,4cm,以AC为直径作圆与斜边AB交于点D,试求BD的长.
(2)已知曲线C的参数方程为
x=1+cosθ
y=sinθ
(θ为参数),求曲线C上的点到直线x-y+1=0的距离的最大值.
(3)若a,b是正常数,a≠b,x,y∈(0,+∞),则
a2
x
+
b2
y
(a+b)2
x+y
,当且仅当
a
x
=
b
y
时上式取等号.请利用以上结论,求函数f(x)=
2
x
+
9
1-2x
(x∈0,
1
2
)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
y=sinθ+1
x=cosθ
(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

附加题:(选做题:在下面A、B、C、D四个小题中只能选做两题)
A.选修4-1:几何证明选讲
如图,已知AB、CD是圆O的两条弦,且AB是线段CD的垂直平分线,
已知AB=6,CD=2
5
,求线段AC的长度.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值λ1=1及对应的一个特征向量e1=
1
1
和特征值λ2=2及对应的一个特征向量e2=
1
0
,试求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
y=sinθ+1
x=cosθ
(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲
已知关于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案