精英家教网 > 高中数学 > 题目详情

已知椭圆C:数学公式(a>b>0)的一个焦点是(1,0),两个焦点与短轴的一个端点
构成等边三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的对称点为A1
(ⅰ)求证:直线A1B过x轴上一定点,并求出此定点坐标;
(ⅱ)求△OA1B面积的取值范围.

解:(Ⅰ)因为椭圆C的一个焦点是(1,0),所以半焦距c=1.
因为椭圆两个焦点与短轴的一个端点构成等边三角形.
所以,解得a=2,b=所以椭圆的标准方程为

(Ⅱ)(i)设直线l:x=my+4与联立并消去x得:(3m2+4)y2+24my+36=0.

由A关于x轴的对称点为A1,得A1(x1,-y1),
根据题设条件设定点为T(t,0),得,即
所以=即定点T(1,0).

(ii)由(i)中判别式△>0,解得|m|>2.可知直线A1B过定点T(1,0).
所以|OT||y2-(-y1)|=

令t=|m|记,得,当t>2时,φ(t)>0.
在(2,+∞)上为增函数.所以
.故△OA1B的面积取值范围是
分析:(Ⅰ)根据焦点坐标求得c,根据椭圆两个焦点与短轴的一个端点构成等边三角形.求得a和c的关系式,进而求得a和b,则椭圆的方程可得.
(Ⅱ)(i)设出直线l的方程,与椭圆方程联立消去x,设出A,B的坐标,则可利用韦达定理求得y1y2和y1+y2的表达式,根据A点坐标求得关于x轴对称的点A1的坐标,设出定点,利用TB和TA1的斜率相等求得t.
(ii)由(i)中判别式△>0求得m的范围,表示出三角形OA1BD面积,利用m的范围,求得m的最大值,继而求得三角形面积的范围.
点评:本题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查运算求解能力和分析问题、解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年福建省龙岩市高三(上)期末质量检查一级达标数学试卷(文科)(解析版) 题型:解答题

已知椭圆C: (a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B.
(ⅰ)若满足(O为坐标原点),求△AOB的面积;
(ⅱ)当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(四川卷解析版) 题型:解答题

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点

(I)求椭圆C的离心率:

(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2014届甘肃武威六中高二12月学段检测文科数学试题(解析版) 题型:解答题

(12分)已知椭圆C:(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M、N.

 ①求椭圆C的方程.

 ②当⊿AMN的面积为时,求k的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第七次月考理科数学 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:选择题

已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为kk>0)的直线与椭圆C相交于A、B两点,若。则 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步练习册答案