分析 利用三角形的中位线平行于第三边,平行线分线段成比例定理,得到FG、EH都平行于BD,利用平行线的传递性得到GF∥EH,再利用分别在两个平面内的点在两个平面的交线上,则结论得证.
解答
证明:如图,
∵F、G分别是边BC、CD上的点,且$\frac{CF}{CB}$=$\frac{CG}{CD}$=$\frac{3}{5}$,
∴GF∥BD,并且GF=$\frac{3}{5}$BD,
∵点E、H分别是边AB、AD的中点,
∴EH∥BD,并且EH=$\frac{1}{2}$BD,
∴EH∥GF,并且EH≠GF,
∴EF与GH相交,设其交点为P,
∴P∈面ABC内,
同理C∈面ACD,
又∵面ABC∩面DAC=AC
∴P在直线AC上.
即EF、GH、AC交于一点.
点评 本题考查三角形的中位线性质、平行线分线段成比例定理、直线的平行性的传递性、确定平面的条件、证三点共线常用的方法,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | an=a1+d(n+1) | B. | an=a1+dn | C. | an=a1+d(n-1) | D. | an=a1+d(n-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\left\{\begin{array}{l}{1-x,x<1}\\{x-1,x≥1}\end{array}\right.$ | |
| B. | f(x)=$\left\{\begin{array}{l}{-x-1,x<-1}\\{1+x,-1≤x<0}\\{1-x,0≤x≤1}\\{x-1,x>1}\end{array}\right.$ | |
| C. | f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x>1或x<-1}\\{1-{x}^{2},-1≤x≤1}\end{array}\right.$ | |
| D. | f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+1,x≤0}\\{{x}^{2}-2x+1,x>0}\end{array}\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com