精英家教网 > 高中数学 > 题目详情
已知函数,其中
(1)当a=1时,求它的单调区间;
(2)当时,讨论它的单调性;
(3)若恒成立,求的取值范围.
(1) (2)当单调增区间为;当单调减区间为;当时,单调增区间为,单调减区间为. (3) 

试题分析:(1)当时,,对称轴方程为
在对称轴方程内,则的单调减区间为
单调减区间为  5分
(2),对称轴方程为
下面分三种情况讨论:
单调增区间为
单调减区间为
时,单调增区间为,单调减区间为.  10分
(3)当时,有恒成立,
等价于,只要
  15分
点评:对于二次函数f(x)=ax2+bx+c=0(a≠0)在实数集R上恒成立问题可利用判别式直接求解,即 f(x)>0恒成立;f(x)<0恒成立.若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若f(10x)=x,则f(5)=         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设集合,则下述对应法则中,不能构成A到B的映射的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

海安县城有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
(1)设在甲家租一张球台开展活动小时的收费为,在乙家租一张球台开展活动小时的收费为.试求
(2)问:小张选择哪家比较合算?为什么?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)求,并求数列的通项公式.   
(2)已知函数上为减函数,设数列的前的和为
求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,使成立,则实数的取值范围为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

据国家海洋研究机构统计,中国有约120万平方公里的海洋国土处于争议中,该数据可用科学记数法表示为    平方公里.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一家冷饮厂每个月都要对大型冰激凌机进行维修,维修人员发现,维修费用与时间的关系:第个月的维修费为元,买这种冰激凌机花费元,使用年报废,那么这台冰激凌机从投入使用到报废,每天的消耗是(     )
(注:机器从投入生产到报废共付出的维修费用与购买费用之和平均到每一天叫做每天的消耗;一年按天计算.)
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1的一条折线表示;西红柿的种植成本与上市时间的关系用图2的抛物线表示.
(1)写出图1表示的市场售价与时间的函数关系式;写出图2表示的种植成本与时间的函数关系式
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?

(注:市场售价和种植成本的单位:元/百千克,时间单位:天)

查看答案和解析>>

同步练习册答案