精英家教网 > 高中数学 > 题目详情
如图,P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)
上的动点,F1、F2是双曲线的焦点,M是∠F1PF2的平分线上一点,且
F2M
MP
=0
.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2M的中点,得|OM|=
1
2
|NF1|=…=a
.类似地:P是椭圆
x2
a2
+
y2
b2
=1(a>b>0,xy≠0)
上的动点,F1、F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且
F2M
MP
=0
.则|OM|的取值范围是 ______.
延长F2M交PF1于点N,可知△PNF2为等腰三角形,
且M为F2M的中点,
|OM|=
1
2
|NF1|
=a-|F2M|
∵a-c<|F2M|<a
故0<|OM|<c=
a2-b2

故|OM|的取值范围是(0,
a2-b2
)

故答案为:(0,
a2-b2
)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,且直线的斜率都存在(记为),则是与点位置无关的定值。试写出双曲线的类似性质,并加以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面几种推理是正确的合情推理的是(  )
(1)由圆的性质类比出球的有关性质;
(2)张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;
(3)三角形内角和是180°,四边形内角和是360°,五边形内有和是540°,由此得凸多边形内角和是(n-2)•180°;
(4)由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°.
A.(1)(2)B.(1)(3)(4)C.(1)(2)(4)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面内圆具有性质“经过切点且垂直于切线的直线必过圆心”,将这一性质类比到空间中球的性质为“经过切点且______”

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

观察(1)tan10°tan20°+tan20°tan60°+tan60°tan10°=1
(2)tan5°tan10°+tan10°tan75°+tan75°tan5°=1
由以上两式成立,推广到一般结论,写出你的推论______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设面积为S的平面四边形的第i条边的边长为ai(i=1,2,3,4),P是该四边形内一点,点P到第i条边的距离记为hi,若
a1
1
=
a2
2
=
a3
3
=
a4
4
=k,则
4
i=1
(ihi=
2S
k
)
,类比上述结论,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),Q是该三棱锥内的一点,点Q到第i个面的距离记为di,若
S1
1
=
S2
2
=
S3
3
=
S4
4
=k,则
4
i=1
(idi)
等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面给出了四个类比推理:
(1)由“若a,b,c∈R则(ab)c=a(bc)”类比推出“若a,b,c为三个向量则(
a
b
)•
c
=
a
•(
b
c
)”;
(2)“a,b为实数,若a2+b2=0则a=b=0”类比推出“z1,z2为复数,若
z21
+
z22
=0则z1=z2=0
”;
(3)“在平面内,三角形的两边之和大于第三边”类比推出“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”;
(4)“在平面内,过不在同一条直线上的三个点有且只有一个圆”类比推出“在空间中,过不在同一个平面上的四个点有且只有一个球”.
上述四个推理中,结论正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下面是按照一定规律画出的一列“树型”图:

设第n个图有an个树枝,则an+1与an(n≥2)之间的关系是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

完成反证法证题的全过程.设a1,a2, ,a7是1,2, ,7的一个排列,求证:乘积p=(a1-1)(a2-2) (a7-7)为偶数.
证明:假设p为奇数,则a1-1,a2-2, ,a7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=     =       =0.但0≠奇数,这一矛盾说明p为偶数.

查看答案和解析>>

同步练习册答案