精英家教网 > 高中数学 > 题目详情
已知函数.
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图像与x轴交于两点,且,又的导函数,若正常数满足条件.证明:.
(1)-1;(2)  ;(3)参考解析

试题分析:(1)因为函数,当时.求出函数的导数,即可得到上函数的单调性,从而得到函数的最大值.
(2)因为,若在区间上不单调,即等价于函数在(0,3)上有实数解,且无重根.所以由,分离变量,通过研究函数的范围,即可得到取值范围.
(3)因为当时,函数的图像与x轴交于两点,所以可得即可用表示m.又由化简.可消去m.即可得到关于的代数式,再利用导数知识求出的最值即可得结论.
试题解析:(1)
函数在[,1]是增函数,在[1,2]是减函数,
所以
(2)因为,所以
因为在区间上不单调,所以在(0,3)上有实数解,且无重根,
,有=,(
所以
(3)∵,又有两个实根
,两式相减,得
,
于是


要证:,只需证:
只需证:.(*)
,∴(*)化为 ,只证即可. 在(0,1)上单调递增,,即
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

二次函数,它的导函数的图象与直线平行.
(1)求的解析式;
(2)若函数的图象与直线有三个公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求函数的极小值;
(2)求函数的递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2ax--(2+a)lnx(a≥0).
(1)当a=0时,求f(x)的极值;
(2)当a>0时,讨论f(x)的单调性;
(3)若对任意的a∈(2,3),x­1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x­2)|成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)已知函数.
(1)当时,求函数的单调区间;
(2)若函数在区间上为减函数,求实数的取值范围;
(3)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)若函数上为减函数,求实数的最小值;
(2)若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的图象如图所示(其中是函数的导函数).下面四个图象中,的图象大致是( )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数上是单调函数,则实数的取值范围是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)=x3ax2bx+1的导数f′(x)满足f′(1)=
2af′(2)=-b,其中ab∈R.
①求曲线yf(x)在点(1,f(1))处的切线方程;②设g(x)=f′(x)ex,求g(x)的极值.

查看答案和解析>>

同步练习册答案