精英家教网 > 高中数学 > 题目详情
4.判断下列函数的奇偶性:f(x)=x+($\sqrt{x}$)2

分析 根据函数奇偶性的定义进行判断即可.

解答 解:函数的定义域为[0,+∞),定义域关于原点不对称,
则函数f(x)为非奇非偶函数.

点评 本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.注意先判断定义域是否关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在△ABC中,内角A,B,C的对边分别是a,b,c.若c=2a,bsinB-asinA=$\frac{1}{2}$asinC,则sinB等于 (  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{7}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式5x2-3x-8>0的解集为(  )
A.(-1,$\frac{8}{5}$)B.(-∞,-1)∪($\frac{8}{5}$,+∞)C.D.R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{\frac{2}{x}}&{x>0}\\{x+1}&{x≤0}\end{array}\right.$,若g(x)=f(x)-k有两个不同零点,则实数k的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设全集U=R,A=(1,+∞),则∁UA=(  )
A.(-1,+∞)B.(-∞,1)C.(-∞,1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若a>1,b<0,且ab+a-b=2$\sqrt{3}$,则ab-a-b的值等于(  )
A.±2$\sqrt{2}$B.2$\sqrt{2}$C.-2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=aln(x+1)-$\frac{4}{x+1}$+x.
(1)对任意的x∈[$-\frac{1}{2}$,+∞),不等式f(x)≤x恒成立,求实数a的取值范围;
(2)若数列{an}的通项公式是an=1+$\frac{1}{n}$(n∈N*),前n项和是Sn,求证:Sn≥$\frac{2ln(n+1)}{ln2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=2x+1(x<1)的反函数是(  )
A.y=log2(x-1),x∈(1,3)B.y=-1+log2x,x∈(1,3)
C.y=log2(x-1),x∈(1,3]D.y=-1+log2x,x∈(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知角α的终边上一点P的坐标为(-$\sqrt{3}$,y)(y≠0),且sinα=$\frac{1}{2}$y,则cosα-$\frac{1}{tanα}$ 等于(  )
A.$\frac{\sqrt{3}}{2}$或-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$或-$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案