精英家教网 > 高中数学 > 题目详情
14.在△ABC中,内角A,B,C的对边分别是a,b,c.若c=2a,bsinB-asinA=$\frac{1}{2}$asinC,则sinB等于 (  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{7}}{3}$D.$\frac{1}{3}$

分析 由正弦定理化简已知可得:b2-a2=$\frac{1}{2}ac$,又c=2a,可解得a2+c2-b2=3a2,利用余弦定理可得cosB,结合范围0<B<π,即可解得sinB.

解答 解:∵bsinB-asinA=$\frac{1}{2}$asinC,
∴由正弦定理可得:b2-a2=$\frac{1}{2}ac$,
又∵c=2a,
∴a2+c2-b2=4a2-$\frac{1}{2}ac$=3a2
∴利用余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{3{a}^{2}}{2a•2a}$=$\frac{3}{4}$,
∴由于0<B<π,解得:sinB=$\sqrt{1-co{s}^{2}B}$=$\sqrt{1-\frac{9}{16}}$=$\frac{\sqrt{7}}{4}$.
故选:A.

点评 本题主要考查了正弦定理,余弦定理,同角三角函数关系式的应用,熟练掌握相关公式及定理是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.等腰直角三角形ABC中,斜边BC长为4$\sqrt{2}$,一个椭圆以C为其中一个焦点,另一焦点在线段AB上,且椭圆经过A,B两点,求该椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知命题p:“若1+lnx>0,则x>a”的否命题为真命题,则实数a的取值范围为[$\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=loga(x2-x+1)在[0,2]上的最大值为2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{m}$=(2cosx+2$\sqrt{3}$sinx,1),$\overrightarrow{n}$=(y,cosx),且$\overrightarrow{m}∥\overrightarrow{n}$.
(1)将y表示为x的函数f(x),并求f(x)的单调增区间;
(2)已知a,b,c分别为△ABC的三个内角A,B,C所对的边,若f($\frac{B}{2}$)=3,且b=2,a+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知关于x的一元二次方程x2-2x+m2=0.
(1)求出该方程有实数根的充要条件;
(2)写出该方程有实数根的一个充分不必要条件;
(3)写出该方程有实数根的一个必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+4x-5,求f(0),f(1),f(-x),f(x)+1,f(x+1),f($\frac{1}{x}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)在R上是奇函数,且当x>0时,f(x)=x2-4x+3.
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图象并指出它的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.判断下列函数的奇偶性:f(x)=x+($\sqrt{x}$)2

查看答案和解析>>

同步练习册答案