精英家教网 > 高中数学 > 题目详情
5.已知命题p:“若1+lnx>0,则x>a”的否命题为真命题,则实数a的取值范围为[$\frac{1}{e}$,+∞).

分析 写出命题p的否命题,根据该命题是真命题,求出实数a的取值范围即可.

解答 解:命题p:“若1+lnx>0,则x>a”的否命题为
“若1+lnx≤0,则x≤a”;
它为真命题,
即lnx≤-1
0<x≤$\frac{1}{e}$,
∴实数a的取值范围是[$\frac{1}{e}$,+∞).
故答案为:[$\frac{1}{e}$,+∞).

点评 本题考查了四种命题之间的关系的应用问题,也考查了不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若${∫}_{1}^{2}$(2x-a)dx=log2$\frac{1}{4}$,则a等于(  )
A.-1B.1C.-5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=log${\;}_{\frac{1}{2}}$(2${\;}^{-{x}^{2}+2x-1}$+1)的单调递减区间为(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$+$\overrightarrow{b}$=(5,-10),$\overrightarrow{a}$-$\overrightarrow{b}$=(3,6),则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|x•(x-2)≤0},B={x|($\frac{1}{2}$)mx-2>2}.
(1)若m=2,求A∩∁RB;
(2)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.公差不为0的等差数列{an}的部分项a${\;}_{{k}_{1}}$,a${\;}_{{k}_{2}}$,a${\;}_{{k}_{3}}$…构成等比数列{a${\;}_{{k}_{n}}$},且k1=1,k2=2,k3=6,则下列项中是数列{a${\;}_{{k}_{n}}$}中的项是(  )
A.a86B.a84C.a24D.a20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x≥$\frac{5}{2}$,则f(x)=$\frac{{x}^{2}-4x+5}{2x-4}$有最小值1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,内角A,B,C的对边分别是a,b,c.若c=2a,bsinB-asinA=$\frac{1}{2}$asinC,则sinB等于 (  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{7}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式5x2-3x-8>0的解集为(  )
A.(-1,$\frac{8}{5}$)B.(-∞,-1)∪($\frac{8}{5}$,+∞)C.D.R

查看答案和解析>>

同步练习册答案