精英家教网 > 高中数学 > 题目详情
8.设随机变量ξ~N(2,1),若P(ξ>3)=m,则p(1<ξ<3)等于(  )
A.$\frac{1}{2}$-2mB.1-mC.1-2mD.$\frac{1}{2}$-m

分析 利用正态分布的对称和概率之和等于1的特点进行计算.

解答 解:∵随机变量ξ服从正态分布N(2,1),
∴P(ξ<1)=P(ξ>3)=m,
∴P(1<ξ<3)=1-2m.
故选:C.

点评 本题考查了正态分布的特点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow a$,$\overrightarrow b$的夹角为120°,$\overrightarrow a=(1,\sqrt{3})$,$|\overrightarrow b|=1$,则$|\overrightarrow a+\overrightarrow b|$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设x,y满足约束条件$\left\{{\begin{array}{l}{x-y≥0}\\{2x+y≥0}\\{3x-y-a≤0}\end{array}}\right.$,若目标函数z=x+y的最小值为$-\frac{2}{5}$,则实数a的值为(  )
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x≤2}\\{x+y-1≥0}\end{array}\right.$,则z=2x-2y-1最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=$\frac{cosx}{{{e^x}+1}}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在正方体ABCD-A1B1C1D1中,B1D与C1D1所成角的余弦值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若z=(m2-m-2)+(m2-2m-3)i为纯虚数,则m=(  )
A.-1B.2C.3D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某同学在一次研究性学习中发现,以下5个不等关系式子
 ①$\sqrt{3}$-1>$2-\sqrt{2}$
②$2-\sqrt{2}$>$\sqrt{5}-\sqrt{3}$
③$\sqrt{5}-\sqrt{3}$>$\sqrt{6}-2$
④$\sqrt{6}-2$>$\sqrt{7}-\sqrt{5}$
⑤$\sqrt{7}-\sqrt{5}$>$2\sqrt{2}-\sqrt{6}$
(1)上述五个式子有相同的不等关系,分析其结构特点,请你再写出一个类似的不等式
(2)请写出一个更一般的不等式,使以上不等式为它的特殊情况,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.极坐标与直角坐标系有相同的长度单位,以原点O为极点,以x轴正半轴为极轴,已知直线l的参数方程$\left\{\begin{array}{l}{x=2+\frac{t}{2}}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρsin2θ=4cosθ
(1)求C的直角坐标方程
(2)设直线l与曲线C交于A,B两点,求AB的长.

查看答案和解析>>

同步练习册答案