精英家教网 > 高中数学 > 题目详情
已知实系数二次函数f(x)=ax2+bx+c对任何-1≤x≤1,都有|f(x)|≤1.
(1)若f(x)=2x2-1,g′(x)=f(x),且g(0)=0,数列{an}满足an=g(an-1),问数列{an}能否构成等差数列,若能,请求出满足条件的所有等差数列;若不能,请说明理由;
(2)求|a|+|b|+|c|的最大值.
(1)设g(x)=dx3+ex2+hx+k,
则g′(x)=3dx2+2ex+h=2x2-1,
∴3d=2,2e=0,h=-1,
d=
2
3
,e=0,h=-1

又g(0)=0,
∴k=0,
g(x)=
2
3
x3-x

若数列{an}构成等差数列,
可设an=un+v,u,v为常数,
∵an=g(an-1),
∴an+1=g(an),
∴v+u(n+1)=
2
3
(un+v)3-(un+v)
(*),
当u=0时,(*)简化为v=
2
3
v3-v

由此解得:u=0,v=o,±
3

所以数列{an}能构成等差数列:
①0,0,0,…;②
3
3
3
,…;③-
3
,-
3
,-
3
.(4分)
(2)f(0)=c,
f(1)=a+b+c,
f(-1)=a-b+c,
三者都属于[-1,1],
设w=|a|+|b|+|c|,不妨设a>0,
①b,c≥0时,w=a+b+c=f(1)<=1;
②b,c<0时,w=a-b-c=f(-1)-2f(0)≤3;
③b≥0>c时,w=a+b-c=f(1)-2f(0)≤3;
④c≥0>b时,w=a-b+c=f(-1)≤1.
当a=2,b=0,c=-1时f(x)=2x22-1满足题设,w=3.
∴所求最大值为3.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)的二次项系数为a,满足不等式f(x)>-2x的解集为(1,3),且方程f(x)+6a=0有两个相等实根,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实系数二次函数f(x)=ax2+bx+c对任何-1≤x≤1,都有|f(x)|≤1.
(1)若f(x)=2x2-1,g′(x)=f(x),且g(0)=0,数列{an}满足an=g(an-1),问数列{an}能否构成等差数列,若能,请求出满足条件的所有等差数列;若不能,请说明理由;
(2)求|a|+|b|+|c|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实系数二次函数f(x)=ax2+bx+c对任何-1≤x≤1,都有|f(x)|≤1.
(1)若f(x)=2x2-1,g′(x)=f(x),且g(0)=0,数列{an}满足an=g(an-1),问数列{an}能否构成等差数列,若能,请求出满足条件的所有等差数列;若不能,请说明理由;
(2)求|a|+|b|+|c|的最大值.

查看答案和解析>>

科目:高中数学 来源:2007年江苏省苏州中学高考数学模拟试卷(解析版) 题型:解答题

已知实系数二次函数f(x)=ax2+bx+c对任何-1≤x≤1,都有|f(x)|≤1.
(1)若f(x)=2x2-1,g′(x)=f(x),且g(0)=0,数列{an}满足an=g(an-1),问数列{an}能否构成等差数列,若能,请求出满足条件的所有等差数列;若不能,请说明理由;
(2)求|a|+|b|+|c|的最大值.

查看答案和解析>>

同步练习册答案