精英家教网 > 高中数学 > 题目详情
已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)的条件下,求以MN为直径的圆的方程.
分析:(1)圆的方程化为标准方程,利用半径大于0,可得m的取值范围;
(2)直线方程与圆方程联立,利用韦达定理及OM⊥ON,建立方程,可求m的值;
(3)写出以MN为直径的圆的方程,代入条件可得结论.
解答:解:(1)(x-1)2+(y-2)2=5-m,∴方程表示圆时,m<5;
(2)设M(x1,y1),N(x2,y2),则x1=4-2y1,x2=4-2y2,得x1x2=16-8(y1+y2)+4y1y2
∵OM⊥ON,∴x1x2+y1y=0,∴16-8(y1+y2)+5y1y2=0①,
x=4-2y
x2+y2-2x-4y+m=0
,得5y2-16y+m+8=0,
y1+y2=
16
5
y1y2=
8+m
5

代入①得m=
8
5

(3)以MN为直径的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0,
即x2+y2-(x1+x2)x-(y1+y2)y=0,
∴所求圆的方程为x2+y2-
8
5
x-
16
5
y=0
点评:本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知方程x2+y2-x+4y+m=0.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆的直线x+2y-1=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)得条件下,求以MN为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则直线y=(k+1)x+2的倾斜角α=
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是
14+6
5
14+6
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2mx-4y+5m=0的曲线是圆C
(1)求m的取值范围;
(2)当m=-2时,求圆C截直线l:2x-y+1=0所得弦长;
(3)若圆C与直线2x-y+1=0相交于M,N两点,且以MN为直径的圆过坐标原点O,求m的值?

查看答案和解析>>

同步练习册答案