精英家教网 > 高中数学 > 题目详情
在极坐标系中,点到圆ρ=2cosθ上动点的距离的最大值为   
【答案】分析:把极坐标化为直角坐标是(-),圆ρ=2cosθ化为(x-1)2+y2=1,由此能求出点到圆上的动点距离最大值.
解答:解:把极坐标化为直角坐标:
⇒(cos)⇒(-),
圆ρ=2cosθ⇒ρ2=2cosθ⇒x2+y2=2x⇒(x-1)2+y2=1,
∴点到圆上的动点距离最大值为
故答案为:
点评:本题考查极坐标的性质和应用,解题时要先把极坐标化成直角坐标,然后再用两点间距离公式进行求解.
练习册系列答案
相关习题

科目:高中数学 来源:2011年普通高中招生考试安徽省市高考理科数学 题型:单选题

在极坐标系中,点  到圆 的圆心的距离为

A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源:2014届安徽省高三第一次月考理科数学试卷(解析版) 题型:选择题

在极坐标系中,点  到圆 的圆心的距离为(   ).

A. 2        B.        C.         D  

 

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省高二上学期期末文科数学试卷(解析版) 题型:选择题

在极坐标系中,点  到圆 的圆心的距离为( )

A.2                B.         C.         D.

 

查看答案和解析>>

科目:高中数学 来源:2013届云南省高二下学期期中文科数学试卷(解析版) 题型:填空题

在极坐标系中,点到圆ρ=2cosθ的圆心的距离为

 

查看答案和解析>>

科目:高中数学 来源:2011年普通高中招生考试安徽省市高考理科数学 题型:选择题

在极坐标系中,点  到圆 的圆心的距离为

(A)2         (B)         (C)         (D)

 

查看答案和解析>>

同步练习册答案