| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 0 |
分析 作出平面区域,变形目标函数z=2x-y平移直线y=2x可得结论.
解答 解:作出$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y≤0}\\{x≥0}\end{array}\right.$所对应的区域(如图阴影),
变形目标函数z=2x-y可得y=2x-z,平移直线y=2x可得:
当直线经过点A($\frac{1}{2}$,$\frac{1}{2}$)时,直线的截距最小,z取最大值,
代值计算可得zmax=2×$\frac{1}{2}$-$\frac{1}{2}$=$\frac{1}{2}$
故选:B![]()
点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 0或1 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}+1$ | B. | $\sqrt{3}-1$ | C. | -$\sqrt{3}-1$ | D. | -$\sqrt{3}+$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0)∪(1,2) | B. | (1,2) | C. | (-∞,1) | D. | (-∞,1)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com