ÒÑÖªÊýÁÐ{an}Âú×㣺a1£«£«£«¡­£«£½n2£«2n(ÆäÖг£Êý¦Ë£¾0£¬n¡ÊN*)

(1)ÇóÊýÁÐ{an}µÄͨÏʽ£»

(2)µ±¦Ë£½4ʱ£¬ÊÇ·ñ´æÔÚ»¥²»ÏàͬµÄÕýÕûÊýr£¬s£¬t£¬Ê¹µÃar£¬as£¬at³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬¸ø³ör£¬s£¬tÂú×ãµÄÌõ¼þ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»

(3)ÉèSnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬Èô¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐ(1£­¦Ë)Sn£«¦Ëan¡Ý2¦Ënºã³ÉÁ¢£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×㣺a1=1ÇÒan+1=
3+4an
12-4an
£¬ n¡ÊN*
£®
£¨1£©ÈôÊýÁÐ{bn}Âú×㣺bn=
1
an-
1
2
(n¡ÊN*)
£¬ÊÔÖ¤Ã÷ÊýÁÐbn-1ÊǵȱÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{anbn}µÄÇ°nÏîºÍSn£»
£¨3£©ÊýÁÐ{an-bn}ÊÇ·ñ´æÔÚ×î´óÏÈç¹û´æÔÚÇó³ö£¬Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×ã
1
2
a1+
1
22
a2+
1
23
a3+¡­+
1
2n
an=2n+1
Ôò{an}µÄͨÏʽ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×㣺a1=
3
2
£¬ÇÒan=
3nan-1
2an-1+n-1
£¨n¡Ý2£¬n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Ö¤Ã÷£º¶ÔÓÚÒ»ÇÐÕýÕûÊýn£¬²»µÈʽa1•a2•¡­an£¼2•n£¡

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×ãan+1=|an-1|£¨n¡ÊN*£©
£¨1£©Èôa1=
54
£¬Çóan£»
£¨2£©Èôa1=a¡Ê£¨k£¬k+1£©£¬£¨k¡ÊN*£©£¬Çó{an}µÄÇ°3kÏîµÄºÍS3k£¨ÓÃk£¬a±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•±±¾©Ä£Ä⣩ÒÑÖªÊýÁÐ{an}Âú×ãan+1=an+2£¬ÇÒa1=1£¬ÄÇôËüµÄͨÏʽanµÈÓÚ
2n-1
2n-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸