精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式
(1)当a=-数学公式时,求函数f(x)在[1,e]上的最大值、最小值;
(2)求f(x)的单调区间.

解:(1)∵f(x)=
当a=-时,f(x)=-
==
令f′(x)=0可得x1=2,x2=-2
当x∈[1,2],f′(x)>0,当x∈[2,e]时,f′(x)<0
∴函数在区间[1,e]上,有x1=2时,,f(x)min=min{f(1),f(e)}
而f(1)=-
∴f(x)min=-
(2)∵

①当a≥0时,由f′(x)>0可得,x>0,由f′(x)<0可得x<0
又x>0
∴f(x)在(0,+∞)单调递增
②当a<0时,=
由f′(x)>0可得,
由f′(x)<0可得,,又x>0
∴f(x)的单调递增区间(0,),减区间(
分析:(1)由f(x)=-,对函数求导可得=,从而可求函数在区间[1,e]上单调性进而可求函数的最大值域最小值
(2)对函数求导,
①当a≥0时,分别由f′(x)>0,f′(x)<0可求函数的单调区间
②当a<0时,由f′(x)>0,f′(x)<0可求函数单调区间
点评:本题主要考查了函数的导数 求解函数的极值及函数的最值,利用导数判断函数的单调区间,解题中要注意分类讨论思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案