精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>﹣2f(x),若g(x)=x2f(x),则不等式g(x)<g(1﹣x)的解集是(
A.( ,+∞)
B.(﹣∞,
C.(﹣∞,0)∪(0,
D.(0,

【答案】C
【解析】解:∵f(x)是定义域为{x|x≠0}的偶函数,
∴f(﹣x)=f(x).
对任意正实数x满足xf′(x)>﹣2f(x),
∴xf′(x)+2f(x)>0,
∵g(x)=x2f(x),
∴g′(x)=2xf(x)+x2f′(x)>0.
∴函数g(x)在(0,+∞)上单调递增,
∴g(x)在(﹣∞,0)递减;
由不等式g(x)<g(1﹣x),

解得:0<x< ,或x<0
∴不等式g(x)<g(1﹣x)的解集为:{x|0<x< 或x<0}.
故选:C.
【考点精析】利用导数的几何意义和利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知通过图像,我们可以看出当点趋近于时,直线与曲线相切.容易知道,割线的斜率是,当点趋近于时,函数处的导数就是切线PT的斜率k,即;一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=x3+ax2+bx+a2在x=1时有极值10,则a的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足an+1+an=104n1(n∈N*),数列{bn}的前n项和为Sn , 且bn=log2an
(1)求bn , Sn
(2)设cn= ,证明: + +…+ Sn+1(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调递增区间;

(2)证明:当时,

(3)确定实数的值,使得存在时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

(1)求的值;

(2)画出图像,并写出单调递增区间(不需要说明理由);

(3)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求函数的定义域;

(2)判断函数的奇偶性,并予以证明。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一装有水的直三棱柱ABC-A1B1C1容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面AA1B1B水平放置,如图所示,DEFG分别在棱CACBC1B1C1A1,水面恰好过点DEFC,CD=2

(1)证明:DEAB;

()若底面ABC水平放置时,求水面的高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点D在△ABC的BC边上,且∠DAC=90°,cosC= ,AB=6,BD= ,则ADsin∠BAD=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的图像与轴的交点为,在轴右侧的第一个最高点和第一个与轴交点分别为

(1)求的解析式;

(2)将函数图像上所有点的横坐标变为原来的倍(纵坐标不变),再将所得图像沿轴正方向平移个单位,得到函数的图像,求的解析式;

(3)在(2)的条件下求函数上的值域。

查看答案和解析>>

同步练习册答案