精英家教网 > 高中数学 > 题目详情

(Ⅰ)求b的取值范围;

(Ⅱ)讨论函数f(x)的单调性.

答案:
解析:

  解:(Ⅰ)函数内是奇函数等价于:

  对任意

  ①式即为,此式对任意,代入②式,得,即都成立相当于,所以b的取值范围是

  (Ⅱ)设任意的,所以

  从而内是减函数,具有单调性.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
n
=(2cosx,
3
sinx),
m
=(cosx,2cosx)
,设f(x)=
n
m
+a

(1)若x∈[0,
π
2
]
且a=l时,求f(x)的最大值和最小值,以及取得最大值和最小值时x的值;
(2)若x∈[0,π]且a=-1时,方程f(x)=b有两个不相等的实数根x1、x2,求b的取值范围及x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx-x+b(a,b均为正常数).
(1)若a=2,求函数f(x)在区间[0,π]上的单调减区间;
(2)设函数在x=
π
3
处有极值.
①对于一切x∈[0,
π
2
]
,不等式f(x)>
2
sin(x+
π
4
)
恒成立,求b的取值范围;
②若函数f(x)在区间(
m-1
3
π,  
2m-1
3
π)
上是单调增函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖二模)设函数f(x)=
axx2+b
(a>0)

(1)若函数f(x)在x=-1处取得极值-2,求a,b的值.
(2)若函数f(x)在区间(-1,1)内单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
ax2+bx
(a≠0).
(1)当a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(2)在(1)的条件下,设函数φ(x)=e2x-bex(e为自然对数的底数),x∈[0,ln2],求函数φ(x)的最小值;
(3)令V(x)=2f(x)-x2-kx(k∈R),如果V(x)的图象与x轴交于A(x1,0),B(x2,0)(0<x1<x2)两点,且线段AB的中点为C(x0,0),求证:V′(x0)≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆模拟)设函数f(x)=(x-2)2+blnx,其中b为常数.
(Ⅰ)若函数f(x)在定义域上单调递增,求b的取值范围;
(Ⅱ)若b≤0,求函数f(x)的极值点;
(Ⅲ)当b=-6时,利用函数f(x)的性质证明:对任意大于1的正整数n,不等式
1
6n2
-
1
6
<ln(2n+1)-lnn<
1
6n2
-
1
6
+ln3
恒成立.

查看答案和解析>>

同步练习册答案