精英家教网 > 高中数学 > 题目详情
直三棱柱中,,点D在上.

(1)求证:
(2)若D是AB中点,求证:AC1∥平面B1CD;
(3)当时,求二面角的余弦值.
(Ⅰ)证明略(Ⅱ)证明略  (Ⅲ)二面角的余弦值为
本试题主要是考查了立体几何中的线面平行的证明,以及线线垂直的证明和二面角的求解的综合运用。
(1)根据已知条件我们知道,AC⊥BC.再结合三棱柱的性质可知线面垂直,然后利用线线垂直得到证明。
(2)要证明线面平行,一般先证明线线平行,然后结合判定定理得到结论。
(3)合理的建立空间直角坐标系,然后利用平面的法向量,借助于向量的夹角公式得到二面角的平面角的表示。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是直角梯形,平面,点的中点,且.

(1)求四棱锥的体积;
(2)求证:∥平面
(3)求直线和平面所成的角是正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知矩形的面积为8,当矩形周长取最小值时,沿对角线折起,则三棱锥的外接球的表面积为________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直二面角A—BD—C,平面ABD⊥平面BCD,若其中给定 AB="AD" =2,,BC⊥CD .
(Ⅰ)求AC与平面BCD所成的角;
(Ⅱ)求点A到BC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间三条直线,如果其中一条直线和其它两条直线都相交,则这三条直线能确定平面的个数是(   )
A.1个或3个B.2个或3个C.1个或2个或3个D.1个或2个或3个或4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

“三角形的三条中线交于一点,且这一点到顶点的距离等于它到对边中点距离的2倍”.试类比:四面体的四条中线(顶点到对面三角形重心的连线段)交于一点,且这一点到顶点的距离等于它到对面重心距离的     倍.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知一个圆锥的侧面展开图是圆心角为120°的扇形、底面圆的直径为2,则该圆锥的体积为             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体中,分别是的中点,则异面直线所成角为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。

(I) 证明:平面⊥平面
(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.
【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.

查看答案和解析>>

同步练习册答案