精英家教网 > 高中数学 > 题目详情
如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。

(I) 证明:平面⊥平面
(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.
【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.
1:1
(Ⅰ)由题设知BC⊥,BC⊥AC,,∴,   又∵,∴,
由题设知,∴=,即,
又∵,  ∴⊥面,   ∵
∴面⊥面
(Ⅱ)设棱锥的体积为=1,由题意得,==
由三棱柱的体积=1,
=1:1, ∴平面分此棱柱为两部分体积之比为1:1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

直三棱柱中,,点D在上.

(1)求证:
(2)若D是AB中点,求证:AC1∥平面B1CD;
(3)当时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

两点在平面的同侧,..,则的长是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将若干水倒入底面半径为的圆柱器皿中(底面水平放置),量得水面的高度为.若将这些水倒入轴截面是正三角形的倒置的圆锥形器皿中,则水面的高度是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分。
如图,已知四棱锥P—ABCD,底面ABCD为矩形,,PA平面ABCD, E,F分别是BC,PC的中点。
(1)求异面直线PB与AC所成的角的余弦值;
(2)求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是
A.球B.三棱柱C.正方形D.圆柱

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果是异面直线,那么和都垂直的直线
A.有且只有一条;B.有一条或两条;
C.不存在或一条;D.有无数多条。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,.棱上有两个动点EF,且EF = a (a为常数).
(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直;      
(Ⅱ)判断三棱锥BCEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.
*




 




















                      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,圆柱的高为2,底面半径为3,AE、DF是圆柱的两条母线,B、C是下底面圆周上的两点,已知四边形ABCD是正方形.
(1)求证:
(2)求正方形ABCD的边长;
(3)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案