精英家教网 > 高中数学 > 题目详情
(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分。
如图,已知四棱锥P—ABCD,底面ABCD为矩形,,PA平面ABCD, E,F分别是BC,PC的中点。
(1)求异面直线PB与AC所成的角的余弦值;
(2)求三棱锥的体积。
(1)
(2)
(1)建立空间直角坐标系,利用向量法求出两异面直线的夹角;(2)利用等体积法求出锥体的体积
解:(1)建立如图所示的空间直角坐标系,则
,……………………………. 4分
所成的角为,………………….  6分
异面直线PB与AC所成角的余弦值为。………………….    8分
(2)
…………………………….    14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,已知直三棱柱ABC–A′B′C′,AC ="AB" =AA,=2,AC,AB,AA′两两垂直,  E,F,H分别是AC,AB,BC的中点, 
(I)证明:EF⊥AH;   
(II)求平面EFC与平面BB′C′所成夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱AA′=1,点M,N分别为的中点。
(Ⅰ)证明:∥平面
(Ⅱ)求三棱锥的体积。(锥体体积公式V=Sh,其中S为底面面积,h为高)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.
(I)判别MN与平面AEF的位置关系,并给出证明;
(II)求多面体E-AFMN的体积.
                 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间三条直线,如果其中一条直线和其它两条直线都相交,则这三条直线能确定平面的个数是(   )
A.1个或3个B.2个或3个C.1个或2个或3个D.1个或2个或3个或4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。

(I) 证明:平面⊥平面
(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.
【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,侧面为棱上异于的一点,,已知,求:
(Ⅰ)异面直线的距离;
(Ⅱ)二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为两个不重合的平面,是两条不重合的直线,给出下列四个命题:
①若,则;②若相交且不垂直,则不垂直;③若,则n⊥; ④若,则.其中所有真命题的序号是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四面体ABCD的外接球的球心为0,E是BC的中点,则直线OE与平面BCD所成角的正切值为               .    

查看答案和解析>>

同步练习册答案