精英家教网 > 高中数学 > 题目详情
如图所示,已知直三棱柱ABC–A′B′C′,AC ="AB" =AA,=2,AC,AB,AA′两两垂直,  E,F,H分别是AC,AB,BC的中点, 
(I)证明:EF⊥AH;   
(II)求平面EFC与平面BB′C′所成夹角的余弦值.
(Ⅰ)见解析  (Ⅱ).
(I)证明线线垂直,可以通过证明线面垂直来解决。本小题连接,分别是的中点后,可知,这样可以通过证,得,故.
(II)以A为原点,AB、AA`、AC所在直线分别为x,y,z轴建立空间直角坐标系A-xyz,然后分别求出平面EFC和平面BB′C′的法向量,利用向量法求出二面角的余弦值
(Ⅰ)如图连接,分别是的中点,
的中位线,,………………2分
又由,两两垂直知,
,又,,则…………4分
,则,故.…………………………6分
(Ⅱ)如图建立空间坐标系,
,
………………………………8分

显然=0,故
不妨设面的法向量为

即:
不妨令,………………10分
易知,不妨令面的法向量为
设面与面夹角为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在如图所示的空间几何体中,平面平面
=,和平面所成的角为,且点在平面上的射影落在的平分线上.

(I)求证:平面
(II)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体的棱长为1,线段上有两个动点E, F,

则下列结论中错误的是 (   )
A.
B.
C.直线与平面所成的角为定值
D.异面直线所成的角为定值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

表示两条直线,表示两个平面,现给出下列命题:
① 若,则;  ② 若,则
③ 若,则; ④ 若,则
其中正确的命题是            .(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体ABCD-A1B1C1D1中,∠BAB1 =30°,则异面直线C1D与B1B所成的角是
A.60°B.90°
C.30° D.45°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

两点在平面的同侧,..,则的长是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为1的正方体被以A为球心,AB为半径的球相截,则所截得几何体(球内部分)的表面积为                                  (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分。
如图,已知四棱锥P—ABCD,底面ABCD为矩形,,PA平面ABCD, E,F分别是BC,PC的中点。
(1)求异面直线PB与AC所成的角的余弦值;
(2)求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面,点E在线段AD上,且CE//AB。
(1)求证:CEPAD;
(2)若,AD=3,CD=,求四棱锥的体积。

查看答案和解析>>

同步练习册答案