精英家教网 > 高中数学 > 题目详情
设a>0,求函数f(x)=-ln(x+a)(x∈(0,+∞))的单调区间.
【答案】分析:由题意函数f(x)=-ln(x+a),首先求出函数的导数,然后根据导数与函数单调区间的关系对a的大小进行分类讨论.
解答:解:由题意得
令f′(x)=0,
即x2+(2a-4)x+a2=0,
(i)当a>1时,
对所有x>0,有x2+(2a-4)+a2>0.
即f′(x)>0,
此时f(x)在(0,+∞)内单调递增;

(ii)当a=1时,
对x≠1,有x2+(2a-4)x+a2>0,
即f′(x)>0,
此时f(x)在(0,1)内单调递增,且在(1,+∞)内也单调递增,
又知函数f(x)在x=1处连续,
因此,函数f(x)在(0,+∞)内单调递增;

(iii)当0<a<1时,
令f′(x)>0,
即x2+(2a-4)x+a2>0,
解得x<2-a-2或x>2-a+2
因此,函数f(x)在区间内也单调递增.
令f′(x)<0,
即x2+(2a-4)x+a2<0,
解得
因此,函数f(x)在区间内单调递减.
点评:本题主要考查导数的概念和计算,应用导数研究函数单调性的方法及推理和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0,求函数f(x)=
x
-ln(x+a)(x∈(0,+∞))的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnxx

(1)求函数f(x)的单调区间;
(2)设a>0,求函数f(x)在[2a,4a]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax2+b(a∈R,b∈R).
(I) 设a>0,求函数f(x)的单调区间;
(Ⅱ) 设a=-1,若方程f(x)=0在[-2,2]上有且仅有一个实数解,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnxx

(1)求函数f(x)的单调区间;
(2)设a>0,求函数f(x)在[2a,4a]上的最小值;
(3)某同学发现:总存在正实数a、b(a<b),使ab=ba,试问:他的判断是否正确?若不正确,请说明理由;若正确,请直接写出a的取值范围(不需要解答过程).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)求函数f(x)的单调区间;
(2)设a>0,求函数f(x)在[2a,4a]上的最小值.

查看答案和解析>>

同步练习册答案