精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
lnxx

(1)求函数f(x)的单调区间;
(2)设a>0,求函数f(x)在[2a,4a]上的最小值;
(3)某同学发现:总存在正实数a、b(a<b),使ab=ba,试问:他的判断是否正确?若不正确,请说明理由;若正确,请直接写出a的取值范围(不需要解答过程).
分析:(1)先确定函数的定义域,再利用导数,可求函数f(x)的单调区间;
(2)根据f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,结合函数的定义域,分类讨论,可求函数f(x)在[2a,4a]上的最小值;
(3)a的取值范围是1<a<e,利用f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,即可求得.
解答:解:(1)定义域为(0,+∞),f′(x)=
1-lnx
x2

f′(x)=
1-lnx
x2
=0
,则x=e,
当x变化时,f'(x),f(x)的变化情况如下表:
x (0,e) e (e,+∞)
f'(x) + 0 -
f(x)
1
e
∴f(x)的单调增区间为(0,e);单调减区间为(e,+∞).…(4分)
(2)由(1)知f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,所以,
当4a≤e时,即a≤
e
4
时,f(x)在[2a,4a]上单调递增,∴f(x)min=f(2a);
当2a≥e时,f(x)在[2a,4a]上单调递减,∴f(x)min=f(4a)
当2a<e<4a时,即
e
4
<a<
e
2
时,f(x)在[2a,e]上单调递增,f(x)在[e,4a]上单调递减,
∴f(x)min=min{f(2a),f(4a)}.
下面比较f(2a),f(4a)的大小,…(8分)
f(2a)-f(4a)=
lna
4a

∴若
e
4
<a≤1
,则f(a)-f(2a)≤0,此时f(x)min=f(2a)=
ln2a
2a

1<a<
e
2
,则f(a)-f(2a)>0,此时f(x)min=f(4a)=
ln4a
4a
;…(10分)
综上得:
当0<a≤1时,f(x)min=f(2a)=
ln2a
2a

当a>1时,f(x)min=f(4a)=
ln4a
4a
,…(12分)
(3)正确,a的取值范围是1<a<e                           …(16分)
理由如下,考虑几何意义,即斜率,当x→+∞时,f(x)→0
又∵f(x)在(0,e)上单调递增,在(e,+∞)上单调递减
∴f(x)的大致图象如右图所示
∴总存在正实数a,b且1<a<e<b,使得f(a)=f(b),即
lna
a
=
lnb
b
,即ab=ba
点评:本题重点考查导数的运用,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案