精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.
分析:(I)对函数求导,求出当自变量等于2时的函数值,求出函数在这一点的切线的斜率,根据点斜式写出切线的方.
(II)根据上一问做出的函数的解析式,对函数求导.使得导数等于0,做出函数的随x的变化,f(x),f(x)的变化情况,看出函数的最值,得到要求的结果
解答:解:(I)∵f(x)=x-
a
x

f(2)=2-
a
2
=1
,a=2,
f(x)=
1
2
x2-2lnx
,f(2)=2-2ln2
∵点P(2,f(2))在y=x+b上,
∴b=2,
l:y=x-2ln2
(II)由(I)知f(x)=
1
2
x2-2lnx

f(x)=x-
2
x
=
(x-
2
)(x+
2
)
x

当f(x)=0时,x=
2

∴随x的变化,f(x),f(x)的变化如下:
精英家教网
由表可知当x∈[
1
e
,e]
时,函数的最大值为2+
1
2e2

∴k>2+
1
2e2
点评:本题考查导数的应用,是一个基础题,本题解题的关键是能够正确写出函数的导函数,根据导函数分析函数的单调性和求出最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案