精英家教网 > 高中数学 > 题目详情
a1=
1
2
,q=2确定的等比数列{an},当an=64时,序号n等于(  )
A.5B.8C.7D.6
由题意,数列的通项为an=a1qn-1=
1
2
×2n-1=2n-2

令2n-2=64
解得n=8
故选B
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标平面xOy上的一列点A1(1,a1),?A2(2,a2),?…,?An(n,an),?…,简记为{An}、若由bn=
AnAn+1
j
构成的数列{bn}满足bn+1>bn,n=1,2,…,其中
j
为方向与y轴正方向相同的单位向量,则称{An}为T点列,
(1)判断A1( 1,  1),?A2( 2,  
1
2
),?A3( 3,  
1
3
),?…,?
An( n, 
1
n
 ),?…
,是否为T点列,并说明理由;
(2)若{An}为T点列,且点A2在点A1的右上方、任取其中连续三点Ak、Ak+1、Ak+2,判断△AkAk+1Ak+2的形状(锐角三角形、直角三角形、钝角三角形),并予以证明;
(3)若{An}为T点列,正整数1≤m<n<p<q满足m+q=n+p,求证:
AnAq
j
AmAp
j

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面XOY上的一列点A1(1,a1),A2(2,a2),A3(3,a3),…An(n,an),…简记为{An},若由bn=
AnAn+1
j
构成的数列{bn}满足bn+1>bn,(n=1,2,…,n∈N) (其中
j
是与y轴正方向相同的单位向量),则称{An}为“和谐点列”.
(1)试判断:A1(1,1),A2(2,
1
2
)
A3(3,
1
22
)
An(n,
1
2n-1
)
…是否为“和谐点列”?并说明理由.
(2)若{An}为“和谐点列”,正整数m,n,p,q满足:≤m<n<p<q1,且m+q=n+p.求证:aq+am>an+ap

查看答案和解析>>

科目:高中数学 来源: 题型:

a1=
1
2
,q=2确定的等比数列{an},当an=64时,序号n等于(  )
A、5B、8C、7D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是由正数组成的等比数列,Sn是其前n项和.
(1)当首项a1=2,公比q=
1
2
时,对任意的正整数k都有
Sk+1-c
Sk-c
<2
(0<c<2)成立,求c的取值范围;
(2)判断SnSn+2-
S
2
n+1
(n∈N*)
的符号,并加以证明;
(3)是否存在正常数m及自然数n,使得lg(Sn-m)+lg(Sn+2-m)=2lg(Sn+1-m)成立?若存在,请求出相应的m,n;若不存在,说明理由.

查看答案和解析>>

同步练习册答案