精英家教网 > 高中数学 > 题目详情
18.已知λ为实数,向量$\overrightarrow{a}$=(1-2λ,-1),$\overrightarrow{b}$=(1,2),若$\overrightarrow{a}⊥\overrightarrow{b}$,则λ等于(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

分析 由向量垂直的条件:数量积为0,运用数量积的坐标表示,解方程即可得到所求.

解答 解:由向量$\overrightarrow{a}$=(1-2λ,-1),$\overrightarrow{b}$=(1,2),
若$\overrightarrow{a}⊥\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=0,
即为(1-2λ)×1-1×2=0,
解得λ=-$\frac{1}{2}$,
故选:A.

点评 本题考查向量垂直的条件:数量积为0,考查向量的坐标运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.甲乙两人相约打靶,甲射击3次,每次射击的命中率为$\frac{1}{2}$,乙射击2次,每次射击的命中率为$\frac{2}{3}$,记甲命中的次数为x,乙命中的次数为y
(1)求x+y的分布列和E(x+y)
(2)猜想两个相互独立的变量x,y的期望与x+y的期望间的关系,并证明你的猜想.
其中,x的分布列为:
xx1x2xn
pp1p2pn
y的分布列为:
yy1y2ym
pp${\;}_{1}^{′}$p${\;}_{2}^{′}$p${\;}_{m}^{′}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow m$=(2cosωx,1),$\overrightarrow n$=($\sqrt{3}sinωx$-cosωx,a),其中(x∈R,ω>0),函数f(x)=$\overrightarrow m•\overrightarrow n$的最小正周期为π.
(1)求ω;
(2)求函数f(x)的单调递增区间;
(3)如果f(x)在区间[-$\frac{π}{6}$,$\frac{5π}{12}$]上的最小值为$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1\\;x≤0}\\{{x}^{\frac{1}{2}}\\;x>0}\end{array}\right.$,若函数f(x)的图象均在直线y=1上半部分(不包括y=1本身),求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\frac{A}{sin(ωx+φ)}$(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(π)等于4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=2x3-6x2-18x-7在区间[1,4]上的最小值为(  )
A.-64B.-51C.-56D.-61

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\frac{|x|}{{e}^{x}}$(x∈R),g(x)=-4x+a•2x+1+a2+a-1(a∈R),若A={x|f(g(x))>e}=R.则a的取值范围是[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=$\frac{a}{3}$x3-ax2+x+1,a∈R.
(1)讨论f(x)的单调性;
(1)若f(x)存在两个极值点x1,x2,且1<$\frac{{x}_{1}}{{x}_{2}}$≤5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a,b,c∈R.a≠0.判断“a-b+c=0“是二次方程ax2+bx+c=0有一根为-1“的什么条件?并说明理由.

查看答案和解析>>

同步练习册答案