精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程 =1表示焦点在x轴上的双曲线. (Ⅰ)命题q为真命题,求实数k的取值范围;
(Ⅱ)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.

【答案】解:(Ⅰ)当命题q为真时,由已知得 ,解得1<k<4 ∴当命题q为真命题时,实数k的取值范围是1<k<4
(Ⅱ)当命题p为真时,由k2﹣8k﹣20≤0解得﹣2≤k≤10
由题意得命题p、q中有一真命题、有一假命题
当命题p为真、命题q为假时,则
解得﹣2≤k≤1或4≤k≤10.
当命题p为假、命题q为真时,则 ,k无解.
∴实数k的取值范围是﹣2≤k≤1或4≤k≤10
【解析】(Ⅰ)命题q为真命题,由已知得 ,可求实数k的取值范围;(Ⅱ)根据题意得命题p、q有且仅有一个为真命题,分别讨论“p真q假”与“p假q真”即可得出实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱 中, 底面 ,且 为等边三角形, 的中点.

(1)求证:直线 平面
(2)求证:平面 平面
(3)求三棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,F1、F2是双曲线 =1(a>0)的左、右焦点,过F1的直线l与双曲线交于点A、B,若△ABF2为等边三角形,则△BF1F2的面积为(
A.8
B.8
C.8
D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 与圆 关于直线 对称,且点 在圆 上.
(1)判断圆 与圆 的公切线的条数;
(2)设 为圆 上任意一点, 三点不共线, 的平分线,且交 ,求证: 的面积之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有AB两个景点,位于一条小路(直道)的同侧,分别距小路 km和2 km,且AB景点间相距2 km,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,动点M到点F(1,0)的距离与它到直线x=2的距离之比为 . (Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设直线y=kx+m(m≠0)与曲线E交于A,B两点,与x轴、y轴分别交于C,D两点(且C,D在A,B之间或同时在A,B之外).问:是否存在定值k,对于满足条件的任意实数m,都有△OAC的面积与△OBD的面积相等,若存在,求k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,A(2,-1),B(4,3),C(3,-2).
(1)求BC边上的高所在直线的一般式方程;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1= ,an+1=a ﹣an+1,则M= + +…+ 的整数部分是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2 , a3 , a2+2成等差数列,求数列{an}的通项公式;
(2)设数列{bn}满足bn= ,且b2= ,证明:b1+b2+…+bn

查看答案和解析>>

同步练习册答案